文章编号: 1000-0887(2007) 12-1400-11

应用数学和力学编委会, ISSN 1000-0887

局部 FG-一致空间内凝聚映象的极大元 和广义对策及应用()

协平

(四川师范大学 数学与软件科学学院, 成都 610066)

(我刊编委 协平来稿)

摘要: 在局部 FG 一致空间内, 引入和研究了某些新的涉及凝聚集值映象的广义矢量拟平衡 问题 组 应用作者在文()中对局部 FC-一致空间内的凝聚集值映象得到的极大元存在性定理,在局 部FG.一致空间内,对这些广义矢量拟平衡问题组的解,证明了某些新的存在性定理 这些结果改 进和推广了文献中某些已知结果到局部 FG-一致空间

关 键 词: 广义矢量拟平衡问题组; 极大元; $C_i(x)$ -FC- 对角拟凸; $C_i(x)$ -FC- 拟凸;

 $C_i(x)$ -FC- 拟似凸; 局部 FG 一致空间

中图分类号: 177.91;177.99 文献标识码: A

引 言

设X 是非空集, 我们将用 2^X 和X 分别表示X 的所有子集的族和X 的一切非空有限子集 的族 令 $_n$ 是 R^{n+1} 内顶点为 e_0 , e_1 , $_1$, e_n 的 n- 维标准单型 对 $\{0,1,\dots,n\}$ 的非空子集J, 令 $J = co(\lbrace e_j : j = I \rbrace)$) 令 I 是任何指标集 对每一 i = I, 令 X_i 和 Y_i 是拓朴空间, Z_i 是 非空集 令 $X = i X_i, Y = i Y_i,$ 对每-i I和x X,令 $x_i = i(x)$ 是x在 X_i 上 的投影 对每一 i I, 令 A_i : X Y 2^{X_i} , T_i : X Y 2^{Y_i} , C_i : X 2^{Z_i} 和 i: X Y X_i 2^{Z_i} 是集值映象

在本文中, 我们考虑下面的广义矢量拟平衡问题组:

() 求 (\hat{x}, \hat{y}) X Y 使得对每-i I, $\hat{x}_i = A_i(\hat{x}, \hat{\gamma}), \quad \hat{\gamma}_i = T_i(\hat{x}, \hat{\gamma}) \quad \text{fl} \quad i(\hat{x}, \hat{\gamma}, z_i) = C_i(\hat{x}), \quad z_i = A_i(\hat{x}, \hat{\gamma})$

SGVQEP()

() 求 (\hat{x}, \hat{y}) X Y 使得对每-i I, $\hat{x}_i = A_i(\hat{x}, \hat{y}), \ \hat{y}_i = T_i(\hat{x}, \hat{y}) \ \exists i \ (\hat{x}, \hat{y}, z_i) = C_i(\hat{x}), \qquad z_i = A_i(\hat{x}, \hat{y})$ SGVQEP()

收稿日期: 2007-04-08; 修订日期: 2007-10-17

基金项目: 四川省教育厅重点科研基金资助项目(2003A081; SZD0406)

丁协平(1938), 男, 自贡人, 教授(Tel: + 86-28-84780952; E-mail: xieping ding@ hotmail. 作者简介:

com).

() 求 (\hat{x}, \hat{y}) X Y 使得对每一i I, $\hat{x}_i \quad A_i(\hat{x}, \hat{y}), \ \hat{y}_i \quad T_i(\hat{x}, \hat{y})$ 和 $_i(\hat{x}, \hat{y}, z_i)$ $C_i(\hat{x}) =$, $z_i \quad A_i(\hat{x}, \hat{y})$ SGVQEP()

() 求 (\hat{x}, \hat{y}) X Y 使得对每一i I, \hat{x}_i $A_i(\hat{x}, \hat{y})$, \hat{y}_i $T_i(\hat{x}, \hat{y})$ 和 $_i(\hat{x}, \hat{y}, z_i)$ $C_i(\hat{x})$, z_i $A_i(\hat{x}, \hat{y})$ SGVQEP()

具有对一切 i I 和(x,y) X Y, $A_i(x,y) = A_i(x)$ 及 $T_i(x,y) = T_i(x)$ 的 SGVQEP ()~ SGVQEP (), 被 Lin 和 Liu^[1]、Lin 等人^[2]、Lin^[3]、Peng 等人^[4]、Ding^[5-6]与 Ding 和 Yao^[7] 分别在(局部凸) 拓朴矢量空间的锥设置下,在 FG 空间、局部 FG 一致空间和 G 凸空间内引入和研究 具有对一切 i I 和(x,y) X X, $Y_i = X_i$, $A_i(x,y) = A_i(x)$, $T_i(x,y) = T_i(x)$ 及 $_i:X$ Y_i X_i 2^{Z_i} 的 SGVQEP ()~ SGVQEP (), 被 Lin^[8]、Ding 等人^[9]和 Ding^[10]分别在 拓朴矢量空间、局部 G 凸一致空间和局部 FG 空间内引入和研究 在不同的假设下对 SGVQEP ()~ SGWQEP () 的上述特殊情形建立了解的某些存在性定理

对于指标集 I, 空间 X_i 、 Y_i 、 Z_i 和映象 A_i 、 T_i 、 C_i 及 i 的适当选取, 容易看出 SGVQEP()~ SGVQEP()包含了大多数广义(矢量) 拟平衡问题组、广义(矢量) 拟变分不等式问题组、广义(矢量) 平衡问题组、广义(矢量) 变分不等式问题组的延伸和推广作为特殊情形, 例如, 见文献 [\pm 10] 和其中的参考文献

在本文中,应用作者在文($)^{[11]}$ 中对局部 FG一致空间内的凝聚集值映象得到的极大元存在性定理,在局部 FG一致空间内,对 SGVQEP() ~ SGVQEP() 的解证明了某些新的存在性定理 这些结果改进和推广了文献中某些已知结果到局部 FG一致空间

1 预备知识

令 $_n$ 是 R^{n+1} 内顶点为 e_0 , e_1 , $_n$ 的n-维标准单型 对 $\{0,1,\dots,n\}$ 的任何非空子集J, 令 $_J = \cos(\left\{e_j:j \cup J\right\})$ 下面概念由 Ben-El-Mechaiekh 等 $J^{[12]}$ 引入

定义 1.1 称 (X,) 是一 L- 凸空间, 如果 X 是一拓扑空间和 $: X = 2^X$ 是一映象,使得对每一 N = X 具有 | N | = n + 1,存在一连续映象 | N | = n + 1,存在一连续映象 | N | = n + 1,存在一连续映象 | N | = n + 1,有 | A | = | J + 1 蕴含 | N | = n + 1,其中 | J | = n + 1,的对应于| A | = n + 1,有 | A | = n + 1

大家知道, 拓朴矢量空间的每一个凸子集, 由 $Horvath^{[13]}$ 引入的每一H-空间和由 Park 和 $Kim^{[14]}$ 引入的每一G-凸空间全都是 L-凸空间

下面概念由 Ding[15] 引入

定义 1.2 称 (X, N) 是一有限连续空间(简称 FC- 空间), 如果 X 是一拓扑空间, 使得对每一 $N = \{x_0, x_n\}$ X,其中 N 的某些元素可以相同, 存在一连续映象 $N: N \in X$ 称 (X, N) 的一子集 D 是 X 的 FC- 子空间, 如果对每一个 $N = \{x_0, x_n\}$ X 和对任何 $\{x_{i_0}, x_{i_k}\}$ D N, N(N) D, 其中 $N \in X$ C

显然,每一个L-凸空间必是FG-空间 Ding 在文献[11]中给出的例 1.1 已说明存在一FG-空间不是L-凸空间 所以在没有凸性结构的 FG 空间内, 研究各种非线性问题是十分合理和有价值的

由FG子空间的定义,容易看出(X, N)的每一FG子空间也是一FC空间,且如果

 $\left\{B_{i}\right\}_{i=I}$ 是FC- 空间(X, N) 的FC- 子空间族和 $_{i=I}B_{i}$,则 $_{i=I}B_{i}$ 也是 $(X, \left\{N\right\})$ 的FC- 子空间, 其中 I 是任何指标集

对 (X, N) 的子集 A,我们能定义 A 的 FG-包如下: $FC(A) = \begin{cases} B & X: A & B \ \text{和} \ B \ \text{E} X \text{ in FC- 子空间} \end{cases}$

显然, FC(A) 是 X 的包含A 的最小 FG 子空间

下面概念由 Ding[6] 引入

定义 1. 3 称 (X, \mathcal{U}, N) 是一局部 FG— 致空间, 如果 (X, \mathcal{U}) 是一致空间和(X, N) 是一FC- 空间, 使得 \mathcal{U} 有由满足下面条件的环境(entourages) 组成的基 \mathcal{A} 对每一 V \mathcal{A} 每当 M X 是 X 的一 FG— 子空间时, 集 $V[M] = \left\{x \quad X: M \quad V[x] \right\}$ 也是 X 的 FG— 子空间

例 1. 1 令 (X, N) 是 Ding $^{[1]}$ 的例 1. 1 内给出的 FG-空间 注意到 X 是一度量空间和每一度量空间是具有一致结构 $\mathcal{U} = \{V(\cdot): > 0\}$ 的 Hausdorff 一致空间,其中 $V(\cdot) = \{(x,y) \mid X \mid X: d(x,y) < \}$,见 文献 [16] 201 对每一 $V(\cdot)$ \mathcal{U} ,我们有 $V[x] = \{y \mid X: \mid x-y\mid < \}$ 且因此对 X 的每一 FC- 子空间 M, $V[M] = \{x \mid X: M \mid V[x] \}$ $= \{x \mid MV[x] \mid \text{ 容易检验}(X, \mathcal{U}, N) \}$ 是一局部 FG-一致空间

下面结果是 Ding^[6] 的定理 2. 2

引理 1.1 令 I 是任何指标集 对每一 i I 、令 $(X_i, \mathcal{U}_i, N_i)$ 是一局部 FC—一致空间,每一 (X_i, \mathcal{U}_i) 有由对称环境(entourages) 组构成的基 \mathcal{R} 令 X = i X_i 、 $\mathcal{U} = i$ X_i 和对任何 X_i 、 X_i 、 X_i 、 X_i 中 X_i ,其中 X_i 是 X_i 上的投影 则 X_i 则 也是一局部 X_i 子 致空间

下面结果是 Ding[11] 的定理 2.1

- () 对每-x X, $G_i(x)$ 是 X_i 的 FG-子空间;
- () 对每一x X, $i(x) / G_i(x)$;
- () 对每一 y_i X_i , $G_i^{-1}(y_i)$ 在X 内是紧开的;
- () 由 G(x)= $_{i}$ $_{i}$

2 SGVQEP解的存在性

在本节中,除非另作说明,我们将固定下面的记号和假设 令I 是任何指标集 对每一i I, 令 $(X_i, \mathcal{U}_i, N_i)$ 和 $(Y_i, \mathcal{U}_i, N_i)$ 是局部 FC-一致空间, Z_i 是非空集 令 $X = \sum_{i \in I} X_i$ 和 $Y = \sum_{i \in I} Y_i$ 对每一i I, 令 A_i : X Y 2^{X_i} , T_i : X Y 2^{Y_i} , C_i : X 2^{Z_i} 和 i: X Y X_i 2^{Z_i} 是集值映象

定义 2. 1 对每一 i I 和 y Y, 称 $_i$ 在第 3 自变量是() 型(() 型 $_i$ () 2 () 2 () 2 () 2 () 2 () 2 () 2 () 2 (3 () 2 (4 () 3 (4 () 4 (4 () 4 (6 () 4 (7 (8 () 2 (7 (8 () 4 (8 (8 (8 () 2 (9 (8 (8 () 3 (9 (8 (8 (8 () 9 (9 (9 (8 (8 (9 (

$$C_i(x) =$$
, $_i(x, y, z_{i,j})$ $C_i(x)$

 \dot{z} 2.1 定义 2.1 内的概念推广了 Peng 等人^[4]的相应概念, 从拓朴矢量空间的凸子集到 FG 空间

引理 2. 1^[17] 令 X 和 Y 是拓朴空间,G: X 2 Y 是集值映象 则 G 在点x X 是下半连续的当且仅当对任何 y G(x) 和任何满足 x x 的网 $\left\{x\right\}$ X,存在一网 $\left\{y\right\}$ 使得 y G(x) 和 y y

下面结果是 Ding[18] 的命题 4.5 和命题 4.6

引理 2. 2 令 $X \setminus Y$ 和 Z 是拓朴空间 令 $F : X Y 2^Z$ 和 $C : X 2^Z$ 是集值映象, 使得

() C 在X Z 内有闭(开)图;

() 对每一y Y, F(, y) 在X 的每一紧子集上是下半连续的则由 $F^*(y) = \begin{cases} x & X: F(x, y) & C(x) \\ \end{pmatrix} (F^*(y) = \begin{cases} x & X: F(x, y) & C(x) \\ \end{pmatrix})$ 定义的集值映象 $F^*: Y = 2^X$ 有紧闭值

引理 2.3 令 $X \setminus Y$ 和 Z 是拓朴空间 令 F: X Y 2^Z 和 C: X 2^Z 是集值映象, 使得

() C 在X Z 内有开(闭)图;

() 对每一 y $Y, F(\ , y)$ 在 X 的每一紧子集上是上半连续的, 具有非空紧闭值则由 $F^*(y) = \left\{x \quad X: F(x,y) \quad C(x)\right\} (F^*(y) = \left\{x \quad X: F(x,y) \quad C(x)\right\})$ 定义的集值映象 $F^*: Y \quad 2^X$ 有紧闭值

注 2.2 引理 2.3 推广了 Ding 和 Park [19] 的引理 2.3

定理 2.1 假设对每一 i I, 下列条件被满足:

- () 对每一(x,y) X $Y, A_i(x,y)$ 和 $T_i(x,y)$ 分别是 X_i 和 Y_i 的非空 FG-子空间:
- () 对每一 (x_i, y_i) X_i $Y_i, A_i^{-1}(x_i)$ 和 $T_i^{-1}(y_i)$ 都在X Y内是紧开的;
- () 对每一 y Y, i 在第 3 自变量是() 型(() 型、() 型、() 型) $C_i(x)$ -FC- 对 角拟凸的:

在 X Y 内是紧开的;

()
$$\notin W_i = \{(x,y) \mid X \mid Y: (x_i,y_i) \mid A_i(x,y) \mid T_i(x,y)\}$$
 $\in X \mid Y$ \cap \in X \cap Y \cap \in X \cap Y \cap \in Y \cap Y

() 由

$$(A @T)(x,y) = \left[\underset{i \in I}{F} A_i(x,y) \right] @\left[\underset{i \in I}{F} T_i(x,y) \right], \qquad P(x,y) \ I \ X @ Y$$

定义的映象 $(A @ T): X @ Y y 2^{X@Y}$ 在X @ Y上是 5- 凝聚的, 其中 5 是X @ Y上的非紧性测度#

则存在 (\hat{x}, \hat{y}) I X @ Y, 使得对每一i I I,

 \hat{x}_i I $A_i(\hat{x}, \hat{y}), \hat{y}_i$ I $T_i(\hat{x}, \hat{y})$ 和 $W_i(\hat{x}, \hat{y}, z_i)$ H $C_i(\hat{x})$ X , P z_i I $A_i(\hat{x}, \hat{y})$, 即, (\hat{x}, \hat{y}) 是 SGVQEP()(SGVQEP()、SGVQEP())的一解#

证明 对每一 i I I, 定义一集值映象 P_i : $X @ Y y 2^{X_i}$ 如下:

$$P_{i}(x, y) = \begin{cases} z_{i} & I & X_{i} : W_{i}(x, y, z_{i}) < C_{i}(x) \end{cases}, \qquad P(x, y) & I & X @ Y \\ (P_{i}(x, y) = \begin{cases} z_{i} & I & X_{i} : W_{i}(x, y, z_{i}) & C_{i}(x) \end{cases}, \qquad P(x, y) & I & X @ Y; \\ P_{i}(x, y) = \begin{cases} z_{i} & I & X_{i} : W_{i}(x, y, z_{i}) & H & C_{i}(x) & X \end{cases}, \qquad P(x, y) & I & X @ Y; \\ P_{i}(x, y) = \begin{cases} z_{i} & I & X_{i} : W_{i}(x, y, z_{i}) & H & C_{i}(x) = \end{cases}, \qquad P(x, y) & I & X @ Y; \end{cases}$$

我们证明对每一iII和(x, y)IX@Y,

$$x_i = P_i(x) \, \mathbb{I} \, \operatorname{FC}(P_i(x, y)), \tag{1}$$

$$P_{i}^{-1}(z_{i}) = \left\{ (x, y) \ I \ X \ @ Y: \ W(x, y, z_{i}) < C_{i}(x) \right\}$$

$$(P_{i}^{-1}(z_{i}) = \left\{ (x, y) \ I \ X \ @ Y: \ W(x, y, z_{i}) \ C_{i}(x) \right\};$$

$$P_{i}^{-1}(z_{i}) = \left\{ (x, y) \ I \ X \ @ Y: \ W(x, y, z_{i}) \ H \ C_{i}(x) \ X \right\};$$

$$P_{i}^{-1}(z_{i}) = \left\{ (x, y) \ I \ X \ @ Y: \ W(x, y, z_{i}) \ H \ C_{i}(x) = \right\};$$

在 X @ Y 内是紧开的 # 从文献 [11] 内的引理 1.2 推得对每 $-z_i$ I X_i , $(FC(P_i))^{-1}(z_i)$ 在 X @ Y 内也是紧开的 # 由引理 1.1, 对每 -i I I, X_i @ Y_i 和 X @ Y 都是局部 FG 一致空间 # 对每 -i I I, 定义一集值映象 G_i : X @ Y Y 2^{X_i @ Y_i} 如下:

$$G_{i}(x, y) = \begin{cases} [A_{i}(x, y) & H \ FC(P_{i}(x, y))] \ @T_{i}(x, y), & \text{supp}(x, y) \ I \ W_{i}, \\ A_{i}(x, y) \ @T_{i}(x, y), & \text{supp}(x, y) \ I \ W_{i}, \end{cases}$$

由条件(),对每一iII和(x,y)IX@ $Y,G_i(x,y)$ 是 X_i @ Y_i 的FC-子空间#由 W_i 的定义和(1)式,对每一iII和(x,y)IX@ $Y,(x_i,y_i)$ Y_i $G_i(x,y)$ #对每一iII和 $(u_i,v_i)IX$ X_i @ Y_i ,我们有

$$G_{i}^{-1}(u_{i}, v_{i}) = [A_{i}^{-1}(u_{i}) \ H (FC(P_{i}))^{-1}(u_{i}) \ H T_{i}^{-1}(v_{i})] \ G$$
$$[((X @ Y) \setminus W_{i}) \ H A_{i}^{-1}(u_{i}) \ H T_{i}^{-1}(v_{i})] \#$$

因为对每一 $u_i \mid X_i$, $(FC(P_i))^{-1}(u_i)$ 在X @ Y内是紧开的, 由条件()和(), $G_i^{-1}(u_i, v_i)$ 在X @ Y 内也是紧开的# 定义一集值映象 $G: X @ Y y 2^{X@X}$ 如下:

$$G(x,y) = \underset{i \in I}{F} G_i(x,y), \qquad P(x,y) \ I \ X @ Y#$$

则我们有

由条件()和在文献[11]中的注 2.1, G 在X @Y 上也是 5- 凝聚的 # 引理 1.2 的一切条件被满足 # 由引理 1.2, 存在(\hat{x},\hat{y}) I X @Y 使得对每一i I I, $G_i(\hat{x},\hat{y})$ = # 如果对某 j I I,

 (\hat{x},\hat{y}) I W_j , 则或 $A_j(\hat{x},\hat{y}) =$ 或 $T_j(\hat{x},\hat{y}) =$,这与条件()相矛盾# 所以对每一i I I, 有 (\hat{x},\hat{y}) I $W_{i\#}$ 这就证明了对每一i I I, \hat{x}_i I $A_i(\hat{x},\hat{y})$, \hat{y}_i I $T_i(\hat{x},\hat{y})$ 和 $A_i(\hat{x},\hat{y})$ H $FC(P_i(\hat{x},\hat{y})) =$,且因此 $A_i(\hat{x},\hat{y})$ H $P_i(\hat{x},\hat{y}) =$ # 所以我们对每一i I I f

$$\hat{x}_{i}$$
 I $A_{i}(\hat{x},\hat{y}), \hat{y}_{i}$ I $T_{i}(\hat{x},\hat{y})$ 和 $W_{i}(\hat{x},\hat{y},z_{i})$ $C_{i}(\hat{x}),$ Pz_{i} I $A_{i}(\hat{x},\hat{y})$ $(\hat{x}_{i}$ I $A_{i}(\hat{x},\hat{y}), \hat{y}_{i}$ I $T_{i}(\hat{x},\hat{y})$ 和 $W_{i}(\hat{x},\hat{y},z_{i})$ $<$ $C_{i}(\hat{x}),$ Pz_{i} I $A_{i}(\hat{x},\hat{y});$ \hat{x}_{i} I $A_{i}(\hat{x},\hat{y}), \hat{y}_{i}$ I $T_{i}(\hat{x},\hat{y})$ 和 $W_{i}(\hat{x},\hat{y},z_{i})$ H $C_{i}(\hat{x})$ = , Pz_{i} I $A_{i}(\hat{x},\hat{y});$ \hat{x}_{i} I $A_{i}(\hat{x},\hat{y}), \hat{y}_{i}$ I $T_{i}(\hat{x},\hat{y})$ 和 $W_{i}(\hat{x},\hat{y},z_{i})$ H $C_{i}(\hat{x})$ X , Pz_{i} I $A_{i}(\hat{x},\hat{y}))$ #

这说明 (\hat{x},\hat{y}) 是 SGVQEP() (SGVQEP() 、SGVQEP() 、SGVQEP())的一个解#

注 2.4 定理 2.1 的条件()能被下面条件代替:

- () 1 对每一 (x, y) I X @ Y, 集 $P_i(x, y) = \left\{z_i \ I \ X_i: W_i(x, y, z_i) < C_i(x)\right\} (P_i(x, y) = \left\{z_i \ I \ X_i: W_i(x, y, z_i) < C_i(x)\right\}, P_i(x, y) = \left\{z_i \ I \ X_i: W_i(x, y, z_i) \ H \ C_i(x) \ X\right\}, P_i(x, y) = \left\{z_i \ I \ X_i: W_i(x, y, z_i) \ H \ C_i(x) \ X\right\}, P_i(x, y) = \left\{z_i \ I \ X_i: W_i(x, y, z_i) \ H \ C_i(x) \ X\right\}$ $P_i(x, y) = \left\{z_i \ I \ X_i: W_i(x, y, z_i) \ H \ C_i(x) \ X\right\}$
- () 2 对一切 (x,y) I X @ Y, $W(x,y,x_i)$ $C_i(x)$ $(W_i(x,y,x_i) < C_i(x), W_i(x,y,x_i)$ H $C_i(x)$ = , $W_i(x,y,x_i)$ H $C_i(x)$ X)#

- ()₁ $C_i: X y 2^{Z_i} 在 X @ Z_i$ 内有开(闭)图;
- **注 2.6** 如果对每一 i I I, Z_i 是一拓朴空间,则定理 2.1 的条件() 内的条件:对每一 z_i I X_i ,集 $\left\{ (x,y)\ I$ X @ Y: $W_i(x,y,z_i)$ $C_i(x) \right\}$ ($\left\{ (x,y)\ I$ X @ Y: $W_i(x,y,z_i)$ H $C_i(x)$ X) 是紧开的,能被下面条件代替:
 - $()^{c}_{1}$ $C_{i}: X y 2^{Z_{i}}$ 在 $X @ Z_{i}$ 内有闭(开)图;
 - $(\)_2^c$ 对每 $-z_i$ I X_i , 映象(x,y) |y| $W_i(x,y,z_i)$ 在 X @ Y 的每一紧子集上是下半连续的#

事实上, 从条件() $^{c}_{1}$ 、() $^{c}_{2}$ 和引理 2.2 推得对每一 z_{i} 1 X_{i} ,集 $\left\{ (x,y)I \ X @ Y: W_{i}(x,y,z_{i}) < C_{i}(x) \right\}$ ($\left\{ (x,y)I \ X @ Y: W_{i}(x,y,z_{i}) \ H \ C_{i}(x) = \right\}$) 在 X @ Y 內是緊闭的# 因此集 $\left\{ (x,y)I \ X @ Y: W_{i}(x,y,z_{i}) \ H \ C_{i}(x) \right\}$ ($\left\{ (x,y)I \ X @ Y: W_{i}(x,y,z_{i}) \ H \ C_{i}(x) \ X \ \right\}$) 在 X @ Y 內是緊开的#

注 2.7 定理 2.1 也是 Peng 等人 $^{[4]}$ 的定理 3.1、3.3、3.4 和 $^{[5]}$ 的定理 4.3 在局部 FG-一致空间内的改进变型

下面我们假设,对每一 i I I, Z_i 是一拓朴矢量空间和 C_i : X y 2^{Z_i} , 使得对每一 x I X, $C_i(x)$ 是具有非空内部的闭凸锥#

定义 2.2 对每一 i I I, 称 $\mathbb{V}_i: X @ Y @ X_i \ , \ 2^{Z_i}$,

() 在第 3 自变量是 $C_i(x)$ -FC- 拟凸的, 如果对每一(x,y) I X @ $Y, N_i = \left\{z_{i,0}, , z_{i,n}\right\}_{I=3} X_{i,4}, \left\{z_{i,i_0}, , z_{i,i_k}\right\}_{<} N_i$ 和 z_{i-I} $U_{N_i}(\$_k)$,存在j I $\left\{0, , , n\right\}$ 使得 $W_i(x,y,z_{i,i_k})$ < $W_i(x,y,z_i)$ + $C_i(x)$;

() 在第 3 自变量是 $C_i(x)$ - FG- 拟似凸的, 如果对每一(x,y) I X @ Y, $N_i = \{z_{i,0}, , z_{i,n}\}$ I $X_i = \{z_{i,0}, , z_{i,n}\}$ $X_i = \{z_{i,0}, , z_{i,n}\}$

注2.8 定义2.2内的概念推广了Lin^[8]的相应概念,从拓朴矢量空间的凸子集到FC-空间

引理 2. 4 如果对每一 i I I, W: X @ Y @ X_i $_{y}$ 2^{Z_i} 在第 3 自变量是 $C_i(x)$ — FG- 拟凸的,则集

 $\left\{z_{i} \mid X_{i}: \mathbb{W}(x, y, z_{i}) \quad C_{i}(x)\right\}$ 和 $\left\{z_{i} \mid X_{i}: \mathbb{W}(x, y_{i}, z_{i}) \mid H \mid (-\inf C_{i}(x)) \mid X \mid \right\}$ 都是 X_{i} 的 FG 子空间#

证明 如果集 $\left\{z_{i} \mid X_{i}: W(x,y,z_{i}) \quad C_{i}(x)\right\}$ 不是 X_{i} 的 FC- 子空间,则存在 $N_{i} = \left\{z_{i,0}, x_{i,n}\right\}$ 几 $3X_{i}$ $3X_{i}$ 3

如果集 $\left\{z_{i} \mid X_{i}: W(x, y, z_{i}) \mid H \mid (-\inf C_{i}(x)) \mid X \right\}$ 不是 X_{i} 的 FC- 子空间, 则存在 $N_{i} = \left\{z_{i,0}, , , z_{i,n}\right\}_{I} \quad _{3}X_{i4}, \left\{z_{i,i_{0}}, , , z_{i,i_{k}}\right\}_{<} \quad N_{i} \mid H \left\{z_{i} \mid X_{i}: W(x, y, z_{i}) \mid H \mid (-\inf C_{i}(x)) \mid X \right\}$ 和 $z_{i}^{*} \mid U_{N_{i}}(\$_{k}),$ 使得

$$W_i(x, y, z_i^*) \ H \ (- \ \text{int} \ C(x)) = \#$$
 (2)

因为 $W_i: X @ Y @ X_{i-y} \ 2^{Z_i}$ 在第 3 自变量是 $C_i(x)$ -FC- 拟凸的, 存在 $j \ I \ \{0, , , k\}$, 使得

$$W_{i}(x, y, z_{i, \frac{i}{i}}) < W_{i}(x, y, z_{i}^{*}) + C_{i}(x) \#$$
(3)

因为 z_{i,i_i} $\{z_{i-1} \mid X_i: W(x,y,z_i) \mid H \text{ (- int } C_i(x)) \mid X \}$,则我们有

$$\mathbb{V}_{i}(x, y, z_{i, i}) \ H \left(-\operatorname{int} C_{i}(x)\right) \ X \quad \# \tag{4}$$

令 v_i^* I $w_i(x, y, z_{i, \frac{i}{j}})$ H (- int $C_i(x)$)# 由式(3), 存在 u_i^* I $w_i(x, y, z_i^*)$, 使得 v_i^* I u_i^* + $C_i(x)$ # 因此我们有

 u_i^* I v_i^* - $C_i(x)$ <- $\mathrm{int} C_i(x)$ - $\mathrm{int} C_i(x)$ # 由此推得 $\mathbb{W}_i(x,y,z_i^*)$ H (- $\mathrm{int} C_i(x))$ X ,这与式(2) 矛盾# 所以集 $\left(z_i I \ X_i: \mathbb{W}(x,y,z_i) \ H \ (\mathrm{int} C_i(x))$ X $\right\}$ 是 X_i 的 FG-子空间#

引理 2.5 如果对每一 i I I, $W: X @ Y @ X_{i,y} 2^{Z_{i}}$ 在第 3 自变量是 $C_{i}(x)$ - FC- 拟似凸的,

则集

定理 2.2 假设对每一 i I I, 下列条件被满足:

- () 对每一(x, y) I X @ $Y, A_i(x, y)$ 和 $T_i(x, y)$ 分别是 X_i 和 Y_i 的非空 FG 子空间;
- () 对每一 (x_i, y_i) I $X_i @ Y_i, A_i^{-1}(x_i), T_i^{-1}(y_i)$ 在 X @ Y 内是紧开的;
- () 映象 $x \mid y \text{ int } C_i(x)$ 有开图, 对每一 $z_i \mid X_i$, 映象 $(x, y) \mid y \mid W(x, y, z_i)$ 在 $X \otimes Y$ 的每一紧子集上是上半连续的具有非空紧值;
- () 对每一y I Y, W 在第 3 自变量是 $C_i(x)$ -FC- 拟似凸的, 对每一(x,y) I X @ Y, W(x,y,xi) int $C_i(x)$;
 - () 集 $W_i = \left\{ (x, y) \mid X \otimes Y: (x_i, y_i) \mid A_i(x, y) \otimes T_i(x, y) \right\}$ 在 $X \otimes Y$ 内是紧闭的;
 - () 如下定义的映象 $(A @ T): X @ Y y 2^{X@Y}$,

$$(A @T)(x,y) = \left[\underset{iII}{F} A_i(x,y) \right] @\left[\underset{iII}{F} T_i(x,y) \right], \qquad P(x,y) I X @Y$$

是 5- 凝聚的, 其中 5 是X @ Y上的非紧性测度#

则存在 (\hat{x}, \hat{y}) I X @ Y 使得对每一i I I,

 $\hat{x}_i \ I \ A_i(\hat{x}, \hat{y}), \hat{y}_i \ I \ T_i(\hat{x}, \hat{y}) \ \text{$\overline{\mathcal{H}}$ $\mathbb{W}_i(\hat{x}, \hat{y}, z_i)$ } - \mathrm{int} C_i(\hat{x}), \qquad P z_i \ I \ A_i(\hat{x}, \hat{y}) \#$

证明 对每一 i I I, 定义一集值映象 P_i : X @ Y y 2^{X_i} 如下:

 $P_{i}(x, y) = \left\{z_{i} \mid X_{i}: W(x, y, z_{i}) < - \operatorname{int} C_{i}(x)\right\}, \qquad P(x, y) \mid X @ Y#$ 由条件()和引理 2.3,对每一 $z_{i} \mid Z_{i}$,集 $P_{i}^{-1}(z_{i}) = \left\{(x, y) \mid X @ Y: W(x, y, z_{i}) < - \operatorname{int} C_{i}(x)\right\}$ 在 X @ Y 内是紧开的# 从条件()和引理 2.5 推得, 对每一 $i \mid I \mid \Pi(x, y) \mid X @ Y, P_{i}(x, y)$ 是 X_{i} 的 FG-子空间和 $X_{i} = R(x) \mid P_{i}(x, y)$ # 对每一 $i \mid I$,定义一集值映象 G_{i} : $X @ Y y \ 2^{X_{i} @ Y_{i}}$ 如下:

由(),对每一 i I I $\Pi(x,y)$ I X @ Y, $G_i(x,y)$ 是 X_i @ Y_i 的 FG- 子空间 # 因为对每一 i I I $\Pi(x,y)$ I X @ Y, x_i I $P_i(x,y)$, 由 W_i 的定义,我们有对每一 i I I $\Pi(x,y)$ I X @ Y, (x_i,y_i) I $G_i(x,y)$ # 利用定理 3. 1 的证明中类似的论证,我们能证明对每一 i I I $\Pi(u_i,v_i)$ I X_i @ Y_i , $G_i^{-1}(u_i,v_i)$ 在 X @ Y 内是紧开的 # 条件() 蕴含 $G(x,y) = F_{iII}G_i(x,y)$ 是 5 凝聚的# 引理 1. 1 的一切条件被满足#证明的余下部分类似于定理 2. 1 中的证明,我们省略#

定理 2.3 假设对每一 i I I, 下列条件被满足:

- () 对每一(x, y) I X @ $Y, A_i(x, y)$ 和 $T_i(x, y)$ 分别是 X_i 和 Y_i 的非空 FC-子空间;
- () 对每一 (x_i, y_i) I $X_i @ Y_i, A_i^{-1}(x_i), T_i^{-1}(y_i)$ 在 X @ Y 内是紧开的;
- () 映象 $x \mid y \in C_i(x)$ 在 X 上是上半连续的, 每一 $z_i \mid Z_i$, 映象 $(x,y) \mid y \mid W(x,y,z_i)$ 在 $X \otimes Y$ 的每一紧子集上是下半连续的:
- () 对每一 y I Y, W 在第 3 自变量是 $C_i(x)$ FC- 拟凸的, 对每一(x,y) I X @ Y, $W(x,y,x_i)$ < $C_i(x)$;
 - () 集 $W_i = \left\{ (x, y) \mid X \otimes Y: (x_i, y_i) \mid A_i(x, y) \otimes T_i(x, y) \right\}$ 在 $X \otimes Y$ 内是紧闭的;
 - () 如下定义的映象 $(A @ T): X @ Y y 2^{X@Y}:$ $(A @ T)(x, y) = \begin{bmatrix} F_{iII} A_i(x, y) \end{bmatrix} @ \begin{bmatrix} F_{iII} T_i(x, y) \end{bmatrix}, \qquad P(x, y) I X @ Y$

是 5- 凝聚的, 其中 5 是 X @ Y 上的非紧性测度#

则存在 (\hat{x}, \hat{y}) I X @ Y 使得对每一i I I,

 \hat{x}_i I $A_i(\hat{x},\hat{y}),\hat{y}_i$ I $T_i(\hat{x},\hat{y})$ 和 $W_i(\hat{x},\hat{y},z_i)$ < $C_i(\hat{x}),$ Pz_i I $A_i(\hat{x},\hat{y})$ 即, (\hat{x},\hat{y}) 是 SGVQEP() 的解#

证明 对每一 iI_I , 定义一集值映象 $P_i: X @ Y_I y_I 2^{X_i}$ 如下:

应用引理 1, 1, 引理 2.2~ 2.5 和类似于定理 2.2 和 2.3 的证明中的论证, 我们能容易地证明下面结果#

定理 2.4 假设对每一 i I I, 下列条件被满足:

- () 对每一(x,y) I X @ $Y, A_i(x,y)$ 和 $T_i(x,y)$ 分别是 X_i 和 Y_i 的非空 FG-子空间;
- () 对每一 (x_i, y_i) I X_i @ $Y_i, A_i^{-1}(x_i), T_i^{-1}(y_i)$ 在 X @ Y 内是紧开的;
- () 映象 $x \mid y$ int $C_i(x)$ 有开图和对每一 $z_i \mid X_i$, 映象 $(x, y) \mid y \mid W(x, y, z_i)$ 在 $X \otimes Y$ 的每一紧子集上是下半连续的:
- () 对每一y I Y, W在第3自变量是 $C_i(x)$ -FC- 拟凸的和对每一(x,y) I X @ Y, $W(x,y,x_i)$ H (- int $C_i(x)$) = ;
 - () 集 $W_i = \left\{ (x, y) \mid X \otimes Y: (x_i, y_i) \mid A_i(x, y) \otimes T_i(x, y) \right\}$ 在 $X \otimes Y$ 内是紧闭的;
 - () 如下定义的映象 (A @ T): X @ Y y 2^{X@Y}:

$$(A @T)(x,y) = \left[\underset{iII}{F} A_i(x,y) \right] @\left[\underset{iII}{F} T_i(x,y) \right], \qquad P(x,y) I X @Y$$

是 5- 凝聚的, 其中 5 是 X @ Y 上的非紧性测度#

则存在 (\hat{x}, \hat{y}) I X @ Y 使得对每一i I I,

$$\hat{x}_{i} I A_{i}(\hat{x}, \hat{y}), \hat{y}_{i} I T_{i}(\hat{x}, \hat{y}) \neq W_{i}(\hat{x}, \hat{y}, z_{i}) H (- \operatorname{int} C_{i}(\hat{x})) = P z_{i} I A_{i}(\hat{x}, \hat{y}) \#$$

定理 2.5 假设对每一 iII, 下列条件被满足:

- () 对每一(x, y) I X @ $Y, A_i(x, y)$ 和 $T_i(x, y)$ 分别是 X_i 和 Y_i 的非空 FC-子空间;
- () 对每一 (x_i, y_i) I $X_i @ Y_i, A_i^{-1}(x_i), T_i^{-1}(y_i)$ 在 X @ Y 内是紧开的;
- () 映象 $x \mid y \in C_i(x)$ 在 X 上是上半连续的, 对每一 $z_{i,l}$ Z_i , 映象 $(x,y) \mid y \in W(x,y,z_i)$ 在 $X \otimes Y$ 的每一紧子集上, 是上半连续的具有非空紧值;
- () 对每一y I Y, W 在第 3 自变量是 $C_i(x)$ -FC- 拟似凸的, 对每一(x,y) I X @ Y, $W(x,y,x_i)$ H $C_i(x)$ X ;
 - () $\notin W_i = \{(x,y) \mid X \otimes Y: (x_i, y_i) \mid A_i(x,y) \otimes T_i(x,y)\}$ $\in X \otimes Y$ \cap \in $X \otimes Y$
 - () 如下定义的映象 $(A @ T): X @ Y y 2^{X@Y}:$ $(A @ T)(x,y) = \left[\underset{i \in I}{F} A_i(x,y) \right] @ \left[\underset{i \in I}{F} T_i(x,y) \right], \qquad P(x,y) \mid X @ Y$

是 5- 凝聚的, 其中 5 是X @ Y 上的非紧性测度#

则存在 (\hat{x}, \hat{y}) I X @ Y 使得对每一i I I,

 \hat{x}_i I $A_i(\hat{x}, \hat{y}), \hat{y}_i$ I $T_i(\hat{x}, \hat{y})$ 和 $W_i(\hat{x}, \hat{y}, z_i)$ H $C_i(\hat{x})$ X , P Z_i I $A_i(\hat{x}, \hat{y})$, 即, (\hat{x}, \hat{y}) 是 SGVQEP() 的解#

注 2.9 定理 2.2~ 2.5 是 Peng 等人^[4] 的相应结果在局部 FG-一致空间内的改进变型

[参考文献]

- [1] Lin L J, Liu Y H. Existence theorems for systems of generalized vector quasi-equilibrium problems and optimization problems [J]. J Optim Theory Appl, 2006, 130(3): 461-475.
- [2] Lin L J, Chen L F, Ansari Q H. Generalized abstract economy and systems of generalized vector quasi-equilibrium problems [J/OL]. J Comput Appl Math, 2006. DOI: 10. 1016/j. cam. 2006. 10. 002.
- [3] Lin L J. Systems of generalized quasivariational inclusions problems with applications to variational analysis and optimizations [J]. J Globbal Optim, 2007, 38(1): 21-39.
- [4] Peng J W, Lee H W J, Yang X M. On system of generalized vector quasi-equilibrium problems with set-valued maps [J]. J Global Optim, 2006, 36(1): 139-158.
- [5] DING Xie-ping. System of generalized vector quasi-equilibrium problems on product FG spaces[J].
 Acta Math Sci B, 2007, 27(3): 522-534.
- [6] DING Xie-ping. The generalized game and the system of generalized vector quasi-equilibrium problems in locally FG-uniform spaces [J/OL]. Nonlinear Anal, 2007. DOI: 10.1016/j.na.1006.12.003.
- [7] DING Xie-ping, Yao J C. Maximal element theorems with applications to generalized game and system of generalized vector quasi-equilibrium problems in G-convex spaces [J]. J Optim Theory Appl, 2005, 126(3):571-588.
- [8] Lin L J. System of generalized vector quasi-equilibrium problems with applications to fixed point theorems for a family of nonexpansive multivalued mappings[J]. J Global Optim, 2006, 34(1):15-32.
- [9] DING Xie-ping, Yao J C, Lin L J. Solutions of system of generalized vector quasi-equilibrium problems in locally G-convex uniform spaces [J]. J Math Anal Appl, 2004, 292(2): 398-410.

- 10] DING Xie-ping. System of generalized vector quasi-equilibrium problems in locally FG spaces[J]. Acta Math Sinica, 2006, 22(5): 1529-1538.
- [11] 丁协平. 局部 FC-一致空间内凝聚映象的极大元和广义对策及应用(Ñ)[J]. 应用数学和力学, 2007, 28(12): 1392-1399.
- [12] Ben-El-Mechaiekh H, Chebbi S, Flornzano M, et al. Abstract convexity and fixed points[J]. J Math Anal Appl, 1998, 222(1): 138-150.
- [13] Horvath C. Contractibility and general convexity [J]. J Math Anal Appl, 1991, 156(2): 341-357.
- [14] Park S, Kim H. Foundations of the KKM theory on generalized convex spaces [J]. J Math Anal Appl, 1997, 209(2): 551-571.
- [15] DING Xie ping. Maximal element theorems in product FG-spaces and generalized games[J]. J Math Anal Appl, 2005, 305(1): 29-42.
- [16] Dugundji J. Topology [M]. Boston: Allyn and Bacon, Inc, 1966.
- [17] Aliprantis C D, Border K C. Infinite Dimensional Analysis [M]. New York: Springer Verlag, 1994.
- [18] DING Xie ping. Generalized KKM type theorems in FG-spaces with applications()[J]. J Global Optim , 2007, 38(3): 367-385.
- [19] DING Xie-ping, Park J Y. Generalized vector equilibrium problems in generalized convex spaces [J].
 J Optim Theory Appl, 2004, 120(2): 937-990.

Maximal Elements and Generalized Games Involving
Condensing Mappings in Locally FC-Uniform
Spaces and Applications()

DING Xie-ping

(College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, P.R.China)

Abstract: Some new systems of generalized vector quasi-equilibrium problems involving condensing mappings were introduced and studied in locally FG uniform spaces. By applying the existence theorem of maximal elements of condensing set-valued mappings in locally FG uniform spaces obtained by author in the preceding paper, some new existence theorems of solutions for the systems of generalized vector quasi-equilibrium problems were proved in locally FG-uniform spaces. These results improve and generalize some recent known results in literature to locally FG-uniform spaces.

Key words: system of generalized vector quasi-equilibrium problems; maximal element; $C_i(x)$ -FG-diagonally quasiconvex; $C_i(x)$ -FG-quasiconvex; $C_i(x)$ -FG-quasiconvex-like; locally FG-uniform spaces