求解厚矩形板弯曲问题的功的互等定理法

付宝连 谭文锋

(燕山大学 秦皇岛 066004) (钱伟长推荐, 1994年5月20日收到)

摘要

在本文中,功的互等定理法(RTM)被推广于求解基于Reissner理论的厚矩形板弯曲问题。 首先,本文给出了厚矩形板弯曲的基本解;其次,给出了三边固定一边自由在均布载荷作用 下厚矩形板弯曲的精确解析解;最后,我们分析了本文解的数值结果。

关键词 功的互等定理法 基本解 厚矩形板的弯曲 Reissner理论

一、引言

在1981年,我们首先应用功的互等定理于求解薄悬臂矩形板的弯曲。之后,我们继续应用该定理于求解板的振动、稳定和弹性力学中的二维和三维问题,因此,形成了一个求解板、壳和弹性力学问题的系统方法,我们称为功的互等定理法(RTM)。

本文,我们将推广该法于求解厚矩形板的弯曲。

对于考虑横向切变形影响的板 的 弯曲,有很 多 理 论,诸 如 Reissner, Henkey, Kromn, Mindlin 和 Donell-Panc 等理论。本文将采用最早期著名的并得到广泛采用的 Reissner理论。

对于求解厚板弯曲的方法,有叠加法、变分法、有限层法和初始函数等方法。在这些方法中,叠加法获得了广泛的应用而且也是较好的方法。

叠加法能被应用于求解某些复杂边界条件的问题。但是,它有二个缺点。其一是,把一个复杂边界条件的问题分解为若干简单边界条件的问题并把它们叠加起来并不是件容易的事。例如,叠加法是由Timoshenko在1938年提出的,但是应用该法于求解悬臂薄矩形板的弯曲却是在1980年完成的。其次,从头到尾的求解所有被叠加的边值问题过于烦琐。

与叠加法比较,功的互等定理法没有这些缺点。

二、基 本 方 程

对于Reissner理论, 控制方程为

$$\nabla^4 W = \frac{1}{D} \left(q - \frac{h^2}{10} \frac{2 - \nu}{1 - \nu} \nabla^2 q \right)$$
 (2.1)

$$\nabla^2 \varphi - \frac{10}{\hbar^2} \varphi = 0 \tag{2.2}$$

切力、弯矩、扭矩和转角分别为

$$Q_{\bullet} = -D \frac{\partial}{\partial x} \nabla^{2} W - \frac{h^{2}}{10} \frac{2 - \nu}{1 - \nu} \frac{\partial q}{\partial x} + \frac{\partial \varphi}{\partial y}$$
 (2.3)

$$Q_{\mathbf{y}} = -D\frac{\partial}{\partial y}\nabla^2 W - \frac{h^2}{10}\frac{2-\nu}{1-\nu}\frac{\partial q}{\partial y} - \frac{\partial \varphi}{\partial x}$$
 (2.4)

$$M_{\bullet} = -D\left(\frac{\partial^2 W}{\partial x^2} + \nu \frac{\partial^2 W}{\partial y^2}\right) + \frac{h^2}{5} \frac{\partial Q_{\bullet}}{\partial x} - \frac{h^2}{10} \frac{\nu}{1 - \nu} q \tag{2.5}$$

$$M_{\bullet} = -D\left(\frac{\partial^2 W}{\partial y^2} + \nu \frac{\partial^2 W}{\partial x^2}\right) + \frac{h^2}{5} \frac{\partial Q_{\bullet}}{\partial y} - \frac{h^2}{10} \frac{\nu}{1 - \nu} q \tag{2.6}$$

$$M_{\bullet,\bullet} = -D(1-\nu)\frac{\partial^2 W}{\partial x \partial y} + \frac{h^2}{10} \left(\frac{\partial Q_{\bullet}}{\partial y} + \frac{\partial Q_{\bullet}}{\partial x} \right)$$
 (2.7)

$$\omega_{\bullet} = -\frac{\partial W}{\partial x} + \frac{1}{D} \frac{h^2}{5(1-v)} Q_{\bullet} \tag{2.8}$$

$$\omega_{\mathbf{y}} = -\frac{\partial W}{\partial y} + \frac{1}{D} \frac{h^2}{5(1-v)} Q_{\mathbf{y}} \tag{2.9}$$

边界条件由简支边、自由边和固定边组成。

如图1所示,对于简支边x=0,边界条件为

$$W = \omega_{\bullet} = M_{\bullet} = 0 \qquad (2.10a, b, c)$$

对于自由边x=a, 我们有

$$Q_s = M_{sy} = M_s = 0$$
 (2.11a,b,c)

固定边9=0的边界条件为

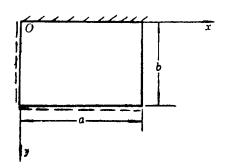
$$W = \omega_s = \omega_s = 0 \tag{2.12a,b,c}$$

三、基 本 解

如图2所示,我们取只受单位横向二维Dirack-delta函数 $\delta(x-\xi,y-\eta)$ 作用的简支矩形板为基本系统。在这种情况下,控制方程(2,1)成为

$$D\nabla^4 W_1 = \delta(x - \xi, y - \eta) \tag{3.1}$$

我们称该基本系统的解为基本解。易于知道,该基本解为



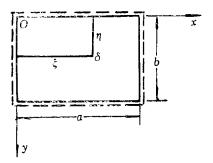


图 1

图 2

$$W_1(x,y;\xi,\eta) = \frac{4}{Dab} \sum_{m=1,2}^{\infty} \sum_{n=1,2}^{\infty} \frac{\sin \alpha_m \xi \sin \beta_n \eta}{(\alpha_m^2 + \beta_n^2)^2} \sin \alpha_m x \sin \beta_n y$$
 (3.2)

或

$$W_{1}(x, y; a-\xi, \eta) = \frac{1}{ab} \sum_{n=1,2}^{\infty} [(1+\beta_{n} \operatorname{acth} \beta_{n} a) - \beta_{n} (a-\xi) \operatorname{cth} \beta_{n} (a-\xi)]$$

$$-\beta_n x \operatorname{eth} \beta_n x] \frac{\operatorname{sh} \beta_n x \operatorname{sh} \beta_n (a-\xi)}{\beta_n^3 \operatorname{sh} \beta_n a} \operatorname{sin} \beta_n \eta \operatorname{sin} \beta_n y, \quad 0 \leqslant x \leqslant \xi$$
(3.3)

$$W_1(a-x,y;\xi,\eta) = \frac{1}{Da} \sum_{n=1,2}^{\infty} [(1+\beta_n a \mathrm{cth}\beta_n a) - \beta_n \xi \mathrm{cth}\beta_n \xi - \beta_n (a-x)]$$

$$\cdot \coth \beta_n (a-x) \left[\frac{\sinh \beta_n (a-x) \sinh \beta_n \xi}{\beta_n^3 \sinh \beta_n a} \sin \beta_n \eta \sin \beta_n y, \quad \xi \leqslant x \leqslant a \right]$$
(3.4)

或

$$W_1(x,y;\xi,b-\eta) = \frac{1}{\overline{D}a} \sum_{m=1,2}^{\infty} \left[(1+\alpha_m b \operatorname{cth} \alpha_m b) - \alpha_m (b-\eta) \operatorname{cth} \alpha_m (b-\eta) - \alpha_m y \right]$$

$$\cdot \operatorname{cth} \alpha_m y = \frac{\operatorname{sh} \alpha_m y \operatorname{sh} \alpha_m (b - \eta)}{\alpha_m^3 \operatorname{sh} \alpha_m b} \operatorname{sin} \alpha_m \xi \operatorname{sin} \alpha_m x, \quad 0 \leqslant y \leqslant \eta$$
 (3.5)

$$W_1(x,b-y;\xi,\eta) = \frac{1}{Da} \sum_{m=1,2}^{\infty} [(1+\alpha_m b \mathrm{cth} \alpha_m b) - \alpha_m \eta \mathrm{cth} \alpha_m \eta - \alpha_m (b-y)]$$

$$\cdot \coth \alpha_m (b-y) \left[-\frac{\sinh \alpha_m (b-y) \sinh \alpha_m \eta}{\alpha_m^3 \sinh \alpha_m b} \sin \alpha_m \xi \sin \alpha_m x, \quad \eta \leqslant y \leqslant b \right]$$
(3.6)

其中 $\alpha_m = \frac{m\pi}{a}, \beta_n = \frac{n\pi}{b}$

从式(3.2)~(3.6)可以看出,厚板基本解的形式和薄板的完全相同。这一相同形式的发现奠定了求解厚板问题的理论基础。但是我们必须指出,对于薄板问题,方程(3.1)的右端项代表单位集中载荷,而对于厚板它没有任何力学意义。为计算厚板方便,我们称 $\delta(x-\xi,y-\eta)$ 为拟单位集中载荷。

为计算实际系统的挠曲方程,把基本解的边界值放在附录中。

四、在均布载荷作用下的简支厚矩形板

如图3所示,把在均载作用下的简支厚矩形板看作实际系统。

在图 2 基本系统与图 3 实际系统之间应用功的互等定 理,并且 把 $q-(h^2/10)[(2-\nu)/(1-\nu)]\nabla^2q$ 看作为实际系统的等效载荷,我们得到

$$W(\xi,\eta) = \int_{0}^{\sigma} \int_{0}^{b} W_{1}(x,y;\xi,\eta) \left(q - \frac{h^{2} 2 - \nu}{101 - \nu} \nabla^{2} q \right) dx dy$$
 (4.1)

将式(3.2)代入(4.1)中并将q展成双三角级数,我们得到

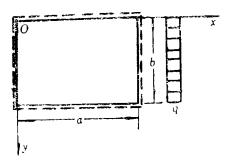


图 3

$$W(\xi, \eta) = \frac{16q}{Dab} \sum_{m=1,3}^{\infty} \sum_{n=1,3}^{\infty} \frac{\sin \alpha_m \xi \sin \beta_n \eta}{\alpha_m \beta_n (\alpha_m^2 + \beta_n^2)^2} + \frac{16q}{Dab} \frac{h^2}{10} \frac{2 - \nu}{1 - \nu}$$

$$\cdot \sum_{m=1}^{\infty} \sum_{n=1,3}^{\infty} \frac{\sin \alpha_m \xi \sin \beta_n \eta}{\alpha_m \beta_n (\alpha_m^2 + \beta_n^2)}$$
(4.2)

注意到

$$\sum_{m=1,3}^{\infty} \frac{\sin \alpha_m \xi}{\alpha_m (\alpha_m^2 + \beta_n^2)} = \frac{1}{4\beta_n^2} \left[1 - \frac{\cosh \beta_n (\xi - a, 2)}{\cosh (1/2)\beta_n a} \right]$$
(4.3)

我们得到

$$W(\xi, \eta) = \frac{4q}{Db} \sum_{n=1,3}^{\infty} \left\{ 1 + \frac{1}{2 \cosh(1/2)\beta_n a} \left[\beta_n \left(\xi - \frac{a}{2} \right) \sinh \beta_n \left(\xi - \frac{a}{2} \right) \right] \right. \\ \left. - \left(2 + \frac{1}{2} \beta_n a \sinh \frac{1}{2} \beta_n a \right) \cosh \beta_n \left(\xi - \frac{a}{2} \right) \right] \\ \left. + \frac{h^2}{10 + -\nu} \left[1 - \frac{\cosh \beta_n + \xi - a/2}{\cosh (\pm/2)\beta_n a} \right] \beta_n^2 \right\} \cdot \frac{1}{\beta_n^2} \sin \beta_n \eta$$

$$(4.4)$$

或

$$W(\xi,\eta) = \frac{4q}{Da} \sum_{m=1,3}^{\infty} \left\{ 1 + \frac{1}{2\operatorname{ch}(1/2)} \alpha_m b \left[-\alpha_m \left(\eta - \frac{b}{2} \right) \operatorname{sh} \alpha_m \left(\eta - \frac{b}{2} \right) \right] \right\}$$

$$- \left(2 + \frac{1}{2} \alpha_m b \operatorname{th} \frac{1}{2} \alpha_m b \right) \operatorname{ch} \alpha_m \left(\eta - \frac{b}{2} \right)$$

$$+ \frac{h^2}{10} \frac{2 - \nu}{1 - \nu} \left[1 - \frac{\operatorname{ch} \alpha_m \left(\eta - b / 2 \right)}{\operatorname{ch} \left(\frac{1}{2} \right) \alpha_m b} \right] \alpha_m^2 \right\} \cdot \frac{1}{\alpha_m^5} \sin \alpha_m \xi$$

$$(4.5)$$

易于验证应力函数 $\varphi=0$.

前述结果与[5]的完全相同。这就证明了功的互等定理法的正确性。但是与[5]比较,功的互等定理法是极其简单的。

我们愿意指出,在[4]中处理控制方程(2.1)右端项的过程中存在着一些问题,因此[4]中结果的误差较大,特别是当h/a增加时,该误差就更大。在表1中,我们给出了本文与[4]结果的比较。

五、在均布载荷作用下三边固定一边自由的厚矩形板

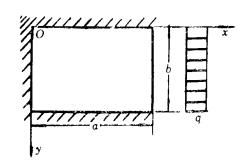
1. 理论与计算

在本节,我们将应用功的互等定理法求解如图 4 所示在均布载荷作用下三边固定一边自

表1

图3板中点的挠度W,弯矩M。和M。

h/a	1./-	$W(qa^4/D)$			$M_{\star}(qa^2)$		$M_{y}(qa^{2})$		
	h/a	本 文 文[4]	误差	本文	文 [4]	误差	本文	文 [4]	误差
	0.005	0.04437 0.04436	-0.0055	0.04789	0.04788	-0.0050	0.04789	0.04788	-0.0136
1.0	0.010	0.04438 0.04437	-0.0221	0.04789	0.04788	-0.0200	0.04789	0.04786	-0.0545
	0.050	0.04485 0.04461	-0.5446	0.04792	0.04769	-0.4963	0.04792	0.04727	-1.3619
	0.100	0.04631 0.04534	-2.1092	0.04804	0.04709	-1.9641	0.04804	0.04542	-5.45 1 5
	0.200	0.05218 0.04827	-7.4891	0.04848	0.04484	-7.5211	0.04849	0.03788	-21.8663
	0.300	0.06194 0.05315	-14.1932	0.04923	0.04150	-15.6957	0.04924	0.02490	-49.4203
	0.500	0.09320 0.06878	-26.2025	0.05161	0.03440	-33.3 5 5 7	0.05164	-0.0202	-139.12 3
	0.005	0.08435 0.08435	-0.0022	0.08116	0.08116	-0.0020	0.04984	0.04984	-0.0104
1.5	0.010	0.08437 0.08437	-0.0088	0.08116	0.08115	-0.0079	0.04984	0.04982	-0.0421
	0.050	0.08483 0.08501	-0.2185	0.08118	0.08102	-0.1958	0.04990	0.04937	-1.0524
	0.100	0.08628 0.08702	-0.8537	0.08123	0.08060	-0.77 6 3	0.05007	0.04797	-4.2058
	0.200	0.09206 0.09504	-3.1271	0.08144	0.07900	-2.9932	0.05076	0.04225	- 16.7631
	0.300	0.10171 0.10840	-6.1688	0.08180	0.07663	-6.3171	0.05190	0.03244	-37.4990
	0.500	0.13258 0.15116	-12.2883	0.08292	0.07140	-13.9027	0.05555	-0.0013	- 102.395
	0.005	0.11061 0.11061	-0.0009	0.10168	0.10168	-0.0009	0.04635	0.04635	-0.0105
	0.010	0.11063 0.11064	-0.0040	0.10168	0.10168	-0.0037	0.04635	0.04633	-0.0423
2.0	0.050	0.11124 0.11136	-0.1036	0.10169	0.10160	-0.0906	0.04642	0.04593	-1.0566
	0.100	0.11316 0.11362	-0.4065	0.10172	0.10135	-0.3593	0.04662	0.04465	-4.2143
	0.200	0.12084 0.12268	-1.5056	0.10181	0.10040	-1.3907	0.04742	0.03951	-16.6700
	0.300	0.13363 0.13778	-3.0163	0.10197	0.09896	-2.9547	0.04875	0.03080	-36. 8346
	0.500	0.17456 0.18610	-6.2033	0.10248	0.09565	-6.6 6 83	0.05303	0.00161	-96.9691
-	0.005	0.14164 0.14164	0.0003	0.12462	0.12462	0.0000	0.03775	0.03774	-0.0132
	0.010	0.14167 0.14167	0.0011	0.12462	0.12462	-0.0001	0.03775	0.03773	-0.0521
	0.050	0.14247 0.14246	0.0040	0.12462	0.12462	-0.0011	0.03782	0.03732	-1.3096
5.0	0.100	0.14494 0.14494	0.0008	0.12462	0.12462	-0.0040	0.03804	0.03606	-5.2083
	0.200	0.15485 0.15488	-0.0246	0.12462	0.12460	-0.0156	0.03894	0.03102	-20.3563
	0.300	0.17135 0.17145	-0.0562	0.12462	0.12458	-0.0333	0.04044	0.02260	-44.1097
	0.500	0.22419 0.22444	-0.1130	0.12461	0.12451	-0.0775	0.04524	- 0.0043	-109.579



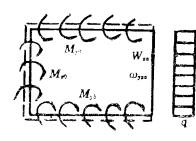


图 4

图 5

由厚矩形板的弯曲.

解除固定边的弯曲约束并用弯矩代替它们,我们得到如图 5 所示的实际系统。我们假设

$$W_{\pi a} = \sum_{n=1,3}^{\infty} b_n \sin \beta_n y \tag{5.1}$$

$$\omega_{yxa} = \sum_{n=1,3}^{\infty} f_n \cos \beta_n y \tag{5.2}$$

$$M_{z0} = \sum_{n=1,3}^{\infty} A_n \sin \beta_n y \tag{5.3}$$

$$M_{y} = M_{yb} = \sum_{m=1,2}^{\infty} C_m \sin \alpha_m x$$
 (5.4a,b)

在图2基本系统与图5实际系统之同应用互等定理,我们得到

$$W(\xi,\eta) + \int_{0}^{b} Q_{1xa}W_{xa}dy + \int_{0}^{b} M_{1yxa}\omega_{yxa}dy$$

$$= \int_{0}^{a} \int_{0}^{b} W_{\perp}(x,y;\xi,\eta) \left(q - \frac{h^{2}}{10} \frac{1-v}{1-v}\nabla^{2}q\right) dxdy - \int_{0}^{b} M_{x0}\omega_{\perp xxu}dy$$

$$- \int_{a}^{a} M_{y0}\omega_{1yy0}dx + \int_{0}^{a} M_{yb}\omega_{1yyb}dx$$

$$(5.5)$$

格附录中基本解的边界值和式(5.1)~(5.4a,b)代入(5.5)之后,式(5.5)成为

$$\begin{split} W(\xi,\eta) &= \frac{4q}{Db} \sum_{n=1,3}^{\infty} \left\{ 1 + \frac{1}{2 \operatorname{ch}(1/2)\beta_{n}a} \left[\beta_{n} \left(\xi - \frac{a}{2} \right) \operatorname{sh}\beta_{n} \left(\xi - \frac{a}{2} \right) \right] \right. \\ &\left. - \left(2 + \frac{1}{2}\beta_{n}a \operatorname{th} \frac{1}{2}\beta_{n}a \right) \operatorname{ch} \left(\xi - \frac{a}{2} \right) \right] \\ &\left. + \frac{h^{2}}{10} \frac{2 - \nu}{1 - \nu} \left[1 - \frac{\operatorname{ch}\beta_{n}(\xi - a/2)}{\operatorname{ch}(1/2)\beta_{n}a} \right] \beta_{n}^{2} \right\} \frac{1}{\beta_{n}^{2}} \operatorname{sin}\beta_{n}\eta \\ \left(\operatorname{or} + \frac{4q}{Da} \sum_{m=1,3}^{\infty} \left\{ 1 + \frac{1}{2\operatorname{ch}(1/2)\alpha_{m}b} \left[\alpha_{m} \left(\eta - \frac{b}{2} \right) \operatorname{sh}\alpha_{m} \left(\eta - \frac{b}{2} \right) \right] \right. \\ &\left. - \left(2 + \frac{1}{2}\alpha_{m}b \operatorname{th} \frac{1}{2}\alpha_{m}b \right) \operatorname{ch} \left(\eta - \frac{b}{2} \right) \right] + \frac{h^{2}}{10} \frac{2 - \nu}{1 - \nu} \left[1 - \frac{\operatorname{ch}\alpha_{m}(\eta - b/2)}{\operatorname{ch}(1/2)\alpha_{m}b} \right] \alpha_{m}^{2} \right\} \\ &\cdot \frac{1}{\alpha_{m}^{2}} \operatorname{sin}\alpha_{m}\xi \right) \\ &+ \sum_{n=1,3}^{\infty} \frac{\operatorname{sh}\beta_{n}\xi}{\operatorname{sh}\beta_{n}a} \operatorname{sin}\beta_{n}\eta \left(b_{n} \right) \\ &+ \sum_{n=1,3}^{\infty} \left(\beta_{n}\operatorname{acth}\beta_{n}a - \beta_{n}\xi \operatorname{cth}\beta_{n}\xi \right) \frac{\operatorname{sh}\beta_{n}\xi}{\beta_{n}\operatorname{sh}\beta_{n}a} \operatorname{sin}\beta_{n}\eta \left(f_{n} \right) \\ &+ \frac{1}{2D} \sum_{n=1,3}^{\infty} \left[\beta_{n}\operatorname{acth}\beta_{n}a - \beta_{n}(a - \xi) \operatorname{cth}\beta_{n}(a - \xi) \right] - \frac{\operatorname{sh}\beta_{n}(a - \xi)}{\beta_{n}^{2}\operatorname{sh}\beta_{n}a} \operatorname{sin}\beta_{n}\eta \left(A_{n} \right) \end{aligned}$$

$$+\frac{1}{2D}\sum_{m=1,2}^{\infty}\left\{\alpha_{m}b\operatorname{cth}\alpha_{m}b\left[\operatorname{sh}\alpha_{m}\left(b-\eta\right)+\operatorname{sh}\alpha_{m}\eta\right]-\left[\alpha_{m}\left(b-\eta\right)\operatorname{ch}\alpha_{m}\left(b-\eta\right)\right]\right\}$$

$$+a_{m}\operatorname{ch}\alpha_{m}\eta]\}\frac{1}{\alpha_{m}^{2}\operatorname{sh}\alpha_{m}b}\operatorname{sin}\alpha_{m}\xi\left(C_{m}\right)\tag{5.6}$$

我们假设应力函数是

$$\varphi(x,y) = \sum_{n=0,1,3}^{\infty} \left[E_n \operatorname{ch} \delta_n \xi + F_n \operatorname{ch} \delta_n (a - \xi) \right] \cos \beta_n \eta$$

$$+ \sum_{m=0,1,2}^{\infty} \left[G_m \operatorname{ch} \gamma_m \eta + H_m \operatorname{ch} \gamma_m (b - \eta) \right] \cos \alpha_m \xi$$
(5.7)

其山

$$\delta_n = \sqrt{\left(\frac{n\pi}{b}\right)^2 + \frac{10}{h^2}}, \ \gamma_m = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \frac{10}{h^2}}$$

使内弯矩(2.5)和(2.6)等于边界弯矩(5.3)和(5.4a,b),该应力函数被求解为

$$\varphi(x,y) = \sum_{n=1,3}^{5} \left\{ -D(1-v) \left[\frac{5}{h^2} \beta_n (b_n) + \left(\frac{5}{h^2} + \beta_n^2 \right) (f_n) \right] \operatorname{ch} \delta_n \xi \right\}$$

$$-\beta_n \mathrm{ch} \delta_n (a-\xi) \left(-1_n\right) \left\{ -\frac{1}{\delta_n \mathrm{sh} \delta_n a} \cos \beta_n \eta + \sum_{m=1,2}^{\infty} \left[-\alpha_m \mathrm{ch} \gamma_m \eta + \alpha_m \right] \right\}$$

$$\cdot \operatorname{ch} \gamma_{m}(b-\eta)] \frac{1}{\gamma_{m} \operatorname{sh} \gamma_{m} b} \cos \alpha_{m} \xi(C_{m}) - D(1-\nu) \frac{5}{h^{2}} \frac{\operatorname{ch} \delta_{0} \xi}{\delta_{0} \operatorname{sh} \delta_{0} a} (f_{0})$$
 (5.8)

所有的边界条件必须满足。

对于 $\omega_{\xi\xi_0}=0$,有

$$\left(-\frac{\beta_{n}}{\sinh\beta_{n}a} + \frac{\beta_{n}^{2}}{\delta_{n}} \frac{1}{\sinh\delta_{n}a}\right)(b_{n}) + \left[\frac{1}{2}(1-\nu)(\beta_{n}acth\beta_{n}a-1)\frac{1}{\sinh\beta_{n}a}\right] - \frac{h^{2}}{5\frac{\beta_{n}^{2}}{\sinh\beta_{n}a}} + \left(1 + \frac{h^{2}}{5}\beta_{n}^{2}\right)\frac{\beta_{n}}{\delta_{n}} \frac{1}{\sinh\delta_{n}a}\right](f_{n})
+ \left[\frac{1}{2D}\left(\frac{1}{\sinh^{2}\beta_{n}a} - \frac{1}{\beta_{n}}cth\beta_{n}a\right) - \frac{h^{2}}{5D(1-\nu)}\beta_{n}cth\beta_{n}a\right]
+ \frac{h^{2}}{5D(1-\nu)}\frac{\beta_{n}^{2}}{\delta_{n}}-cth\delta_{n}a\right](A_{n}) + \sum_{m=1,2}^{\infty}\left[-\frac{4}{Db}\frac{\alpha_{m}\beta_{n}}{(\alpha_{m}^{2}+\beta_{n}^{2})^{2}} + \frac{h^{2}}{5D(1-\nu)}\frac{4}{b}\frac{\alpha_{m}\beta_{n}}{\alpha_{m}^{2}+\beta_{n}^{2}} - \frac{h^{2}}{5D(1-\nu)}\frac{1}{b}\frac{\alpha_{m}\beta_{n}}{\nu_{m}^{2}+\beta_{n}^{2}}\right](C_{m})
= \frac{2q}{Db}\left[\left(\beta_{n}th\frac{1}{2}\beta_{n}a - \frac{1}{2}\beta_{n}^{2}a\frac{1}{ch^{2}(1/2)\beta_{n}a}\right)\frac{1}{\beta_{n}^{5}} - \frac{h^{2}}{5}\frac{\nu}{1-\nu}\frac{1}{\beta_{n}^{2}}-th\frac{1}{2}\beta_{n}a\right]$$
(5.9)

对于0970=0, 有

$$\frac{2}{a} \sum_{n=1,3}^{\infty} \left(-\frac{\alpha_m \beta_n}{\alpha_n^2 + \beta_n^2} - \frac{\alpha_m \beta_n}{\alpha_m^2 + \delta_n^2} \right) (-1)^m (b_n) + \frac{2}{a} \sum_{n=1,3}^{\infty} \left[-(1-\nu) \frac{\alpha_m \beta_n^2}{(\alpha_m^2 + \beta_n^2)^2} \right]$$

$$+ \frac{h^{2}}{5} \frac{\alpha_{m}^{2} \beta_{n}^{2}}{\alpha_{m}^{2} + \beta_{n}^{2}} - \left(1 + \frac{h^{2}}{5} \beta_{n}^{2}\right) \frac{\alpha_{m}}{\alpha_{m}^{2} + \delta_{n}^{2}} \right] (-1)^{m} (f_{n})
+ \frac{2}{Da} \sum_{n=1,3}^{\infty} \left[-\frac{\alpha_{m} \beta_{n}}{(\alpha_{m}^{2} + \beta_{n}^{2})^{2}} + \frac{1}{1 - \nu} \frac{h^{2}}{5} \frac{\alpha_{m} \beta_{n}}{\alpha_{m}^{2} + \beta_{n}^{2}} - \frac{h^{2}}{5(1 - \nu)} \frac{\alpha_{m} \beta_{n}}{\alpha_{m}^{2} + \delta_{n}^{2}} \right] (A_{n})
+ \frac{1}{D} \left\{ -\left[\frac{b}{2} \frac{1}{\sinh \alpha_{m} b} + \frac{1}{2\alpha_{m}} + \frac{h^{2}}{5(1 - \nu)} \alpha_{m} \right] th \frac{1}{2} \alpha_{m} b \right.
+ \frac{h^{2}}{5(1 - \nu)} \frac{\alpha_{m}^{2}}{\gamma_{m}} th \frac{1}{2} \gamma_{m} b \right\} (C_{m})
= \frac{q}{Da} \left[1 - (-1)^{m} \right] \left[\left(\alpha_{m} th - \frac{1}{2} \alpha_{m} b - \frac{1}{2} \alpha_{m}^{2} b \right) \frac{1}{\alpha_{m}^{5}} - \frac{\nu}{5(1 - \nu)} \frac{h^{2}}{\alpha_{m}^{2}} th \frac{1}{2} \alpha_{m} b \right]$$

$$= \frac{q}{5(1 - \nu)} \frac{h^{2}}{\alpha_{m}^{2}} th \frac{1}{2} \alpha_{m} b$$

$$= \frac{\rho}{5(1 - \nu)} \frac{h^{2}}{\alpha_{m}^{2}} th \frac{1}{2} \alpha_{m} b$$

$$= \frac{\rho}{5(1 - \nu)} \frac{h^{2}}{\alpha_{m}^{2}} th \frac{1}{2} \alpha_{m} b$$

$$= \frac{\rho}{5(1 - \nu)} \frac{h^{2}}{\alpha_{m}^{2}} th \frac{1}{2} \alpha_{m} b$$

$$= \frac{\rho}{5(1 - \nu)} \frac{h^{2}}{\alpha_{m}^{2}} th \frac{1}{2} \alpha_{m} b$$

$$= \frac{\rho}{5(1 - \nu)} \frac{h^{2}}{\alpha_{m}^{2}} th \frac{1}{2} \alpha_{m} b$$

$$= \frac{\rho}{5(1 - \nu)} \frac{h^{2}}{\alpha_{m}^{2}} th \frac{1}{2} \alpha_{m} b$$

$$= \frac{\rho}{5(1 - \nu)} \frac{h^{2}}{\alpha_{m}^{2}} th \frac{1}{2} \alpha_{m} b$$

$$= \frac{\rho}{5(1 - \nu)} \frac{h^{2}}{\alpha_{m}^{2}} th \frac{1}{2} \alpha_{m} b$$

$$= \frac{\rho}{5(1 - \nu)} \frac{h^{2}}{\alpha_{m}^{2}} th \frac{1}{2} \alpha_{m} b$$

对于 $Q_{\xi a}=0$,有

$$D(1-\nu)\frac{5}{h^2}\frac{\beta_n^2}{\delta_n}-\coth\delta_n a(b_n)+D(1-\nu)\left[-\beta_n^2\coth\beta_n a+\left(\frac{5}{h^2}+\beta_n^2\right)\frac{\beta_n}{\delta_n}\coth\delta_n a\right](f_n)$$

$$+\left(-\frac{\beta_n}{\sinh\beta_n a} + \frac{\beta_n^2}{\delta_n} \frac{1}{\sinh\delta_n}\right)(A_n) + \frac{4}{b} \sum_{m=1,2}^{\infty} \left(\frac{\alpha_m \beta_n}{\alpha_m^2 + \beta_n^2} - \frac{\alpha_m \beta_n}{\gamma_m^2 + \beta_n^2}\right)(-1)^m (C_m)$$

$$= \frac{4q}{b} \frac{1}{\beta_n^2} \operatorname{th} \frac{1}{2} \beta_n a \tag{5.11}$$

对于 $M_{\eta \in a} = 0$, 有

$$D(1-\nu) \left[-\beta_{n}^{2} \operatorname{cth} \beta_{n} a + \frac{1}{2} \frac{\beta_{n}}{\delta_{n}} (\beta_{n}^{2} + \delta_{n}^{2}) \operatorname{cth} \delta_{n} a \right] (b_{n})$$

$$+ D(1-\nu) \left[\frac{1}{2} (1+\nu) \left(\frac{\beta_{n}^{2} a}{\sinh^{2} \beta_{n} a} - \beta_{n} \operatorname{cth} \beta_{n} a \right) - \frac{h^{2}}{5} \beta_{n}^{3} \operatorname{cth} \beta_{n} a \right]$$

$$+ \left(1 + \frac{h^{2}}{5} \beta_{n}^{2} \right) \frac{1}{2\delta_{n}} (\beta_{n}^{2} + \delta_{n}^{2}) \operatorname{cth} \delta_{n} a \right] (f_{n})$$

$$+ \left[\frac{1}{2} (1-\nu) (\beta_{n} \operatorname{acth} \beta_{n} a - 1) \frac{1}{\sinh \beta_{n} a} - \frac{h^{2}}{5} \frac{\beta_{n}^{2}}{\sinh \beta_{n} a} + \frac{h^{2}}{10} \frac{\beta_{n}}{\delta_{n}} (\beta_{n}^{2} + \delta_{n}^{2}) \frac{1}{\sinh \delta_{n} a} \right] (A_{n})$$

$$+ \frac{1}{b} \sum_{m=1,3}^{\infty} \left[-(1-\nu) \frac{\alpha_{m} \beta_{n}^{2}}{(\alpha_{m}^{2} + \beta_{n}^{2})^{2}} - \frac{h^{2}}{5} \frac{\alpha_{m}^{3}}{\alpha_{m}^{2} + \beta_{n}^{2}} + \frac{h^{2}}{10} \frac{\alpha_{m} (\alpha_{m}^{2} + \gamma_{m}^{2})}{\nu_{m}^{2} + \beta_{n}^{2}} \right] (-1)^{m} (C_{m})$$

$$= \frac{2q}{b} (1-\nu) \left[\left(-\operatorname{th} \frac{1}{2} \beta_{n} a + \frac{\beta_{n} a}{2 \operatorname{ch}^{2} (1/2) \beta_{n} a} \right) \frac{1}{\beta_{n}^{2}} + \frac{h^{2}}{5} \frac{\nu}{1-\nu} \frac{1}{\beta_{n}} \operatorname{th} \frac{1}{2} \beta_{n} a \right]$$

$$(5.12)$$

解(5.9)~(5.12)方程组,我们能得到诸常数 b_n , f_n , A_n 和 C_m 。

数值分析

方程(5.9)~(5.12)是对于每一方程都具有无穷未知数的四个联立方程组。事实上,对

于每一方程我们只能取有限个未知数。计算表明,对于m和 n 各取40 项,我们可得到足够精度的结果。

对于本节的所有图表,我们取a/b=1, 0.5, $2\pi\nu=0.3$.

图6表示在x=a, y=b/2点的挠度沿h/a轴的分布曲线。在x=0, y=b/2 点的弯矩 M_x 对于h/a变化的曲线示于图7。在点x=a/2, y=0的弯矩 M_y 对于h/a变化的曲线示于图8。

对于图9、10和11, 我们取h/a=0.3,

图9表示沿y=b/2的挠度W随x/a的变化曲线,图10表示沿x=0的弯矩 M_* 随y/b的变化曲线,图11表示沿y=0的弯矩 M_* 随x/a的变化曲线。

我们还愿意指出,文献[4]的挠曲方程和应力函数与本文的不一致,这是由于文献[4]在处理控制方程载荷项时出了问题所致。本文结果是正确的。

六、结 论

- 1. 在本文中,我们得到了精确解析解。
- 2. 分析和计算都表明,功的互等定理法具有清晰的力学概,程式化的过程和简单的计**算方法**.

表 2

图4中沿y=b/2的挠度 $W=\theta_1qa^4/D$

a/b	x/a θ_1 h/a	0.00	0.20	0.40	0.60	0.80	1.00
	0.010	0.0000000	0.0006563	0.0015536	0.0021547	0.0025437	0.0030227
	0.050	0.0000000	0.0007002	0.0016213	0.0022400	0.0026499	0.0031699
1.0	0.100	0.0000000	0.0008323	0.0018265	0.0024937	0.0029466	0.0035351
1.0	0.200	0.0000000	0.0013318	0.0026146	0.0034703	0.0040829	0.0048974
	0.300	0.0000000	0.0021408	0.0038986	0.0050621	0.0059362	0.0071031
	0.500	0.0000000	0.0047169	0.0079779	0.0100942	0.0117679	0.0139823
	0.010	0 0000000	0.0032112	0.0098802	0.0173583	0.0247321	0.0323344
	0.050	0.0000000	0.0033203	0.0100910	0.0176856	0.0252134	0.0330385
0.5	0.100	0.0000000	0.0036384	0.0106687	0.0185122	0.0263172	0.0344921
١.٠	0,200	0.0000000	0.0048283	0.0127860	0.0214451	0.0300601	0.0391418
1	0,300	0.0000000	0.0066921	0.0160968	0 . 02 59 7 58	0. 0 357152	0.0459427
	0.500	0.0000000	0.0123416	0.0261428	0.0395905	0.0523994	0.0654807
	0.005	0.0000000	0.0000984	0.0001533	0.0001620	0.0001626	0.0001871
	0.025	0.0000000	0.0001027	0.0001583	0.0001676	0.0001685	0.0001961
2.0	0.050	0.0000000	0.0001157	0.0001758	0.0001852	0.0001864	0.0002178
	0.150	0.0000000	0.0002480	0.0003516	0.0003706	0.0003744	0.0004326
	0.250	0 0000000	0.0005090	0.0006947	0.0007348	0.0007490	0.0008675
-	0.300	0.0000000	0.0006884	0.0009285	0.0009831	0.0010065	0.0011705

376

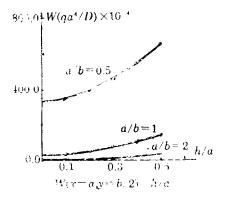
图4中沿x=0的弯矩 $M_{s}=-\theta_{s}qa^{s}$

a /b	$\frac{u/b}{\theta s}$	0.00	0.10	0.20	0.30	0.40	0.50
	0.010	0.00000	0.00792	0.02552	0.04174	0.05248	0.05620
	0.050	0.00000	0.00933	0.02574	0.04130	0.05176	0.05540
1.0	0.100	0.00000	0.01218	0.02660	0.04051	0.05005	0.05341
1.0	0.200	0.00000	0.01672	0.02867	0.03936	0.04669	0.04929
	0.300	0.00000	0.01846	0.02960	0.03853	0.04444	0.04651
	0.500	0.00000	0.01623	0.02761	0.03562	0.04055	0.04223
_	0.010	0.00000	0.03010	0.09654	0.15689	0.19620	0.20980
	0.050	0.00000	0.03156	0.09682	0.15680	0.19610	0.20960
0.5	0.100	0.00000	0.035 5 6	0.09779	0.15623	0.19497	0.20833
0.5	0.200	0.00000	0.04685	0.10215	0.15500	0.19090	0.20344
	0.300	0.00000	0.05789	0.10808	0.15485	0.18690	0.19818
	0.500	0.00000	0.07225	0.11824	0.15698	0.18301	0.19216
	0.005	0.00000	0.00199	0.00644	0.01054	0.01327	0.01421
	0.025	0.00000	0.00235	0.00650	0.01044	0.01309	0.01402
2.0	0.050	0.00000	0.00308	0.00673	0.01026	0.01268	0.01353
4.0	0.150	0.00000	0.00468	0.00750	0.00977	0.01126	0.01179
	0.250	0.00000	0.00395	0.00674	0.00871	0.00992	0.01033
	0.300	0.00000	0.00299	0.00581	0.00774	0.00891	0.00930

表 4

图4中沿y=0的弯矩 $M_y=-\theta_2qa^2$

,	x/a								
a/b	h/a · ·	0.00	0.20	0.40	0.60	0.80	1.00		
	0.010	0.00000	0.02530	0.05543	0.07178	0.08150	0.00000		
	0.050	0.00000	0.02547	0.05480	0.07123	0.08157	0.00000		
1.0	0.100	0.00000	0.02642	0.05370	0.07032	0.08051	0.00000		
L.U	0.200	0.00000	0.02868	0.05158	0.06764	0.07782	0.00000		
!	0.300	0.00000	0.02941	0.04944	0.06471	0.07530	0.00000		
	0.500	0.00000	0.02639	0.04402	0.05854	0.06968	0.0000		
	0.010	0.00000	0.02918	0.09527	0.16278	0.23167	0.00000		
	0.050	0.00000	0.03047	0.09550	0.16355	0.23437	0.00000		
0.5	0.100	0.00000	0.03437	0.09684	0.16474	0.23131	0.00000		
ر ا	0.200	0.00000	0.04592	0.10292	0.16636	0.22245	0.00000		
į	0.300	0.00000	0.05699	0.10971	0.16711	0.21488	0.00000		
	0.500	0.00000	0.07054	0.11864	0.16613	0.20048	0.00000		
	0.005	0.00000	0.01411	0.02001	0.02052	0.02005	0.00000		
2.0	0.025	0.00000	0.01401	0.01996	0.02049	0.02011	0.00000		
	0.050	0.00000	0.01375	0.01974	0.02033	0.02002	0.00000		
	0.150	0.00000	0.01252	0.01796	0.01911	0.01922	0.00000		
	0.250	0.00000	0.01070	0.01541	0.01698	0.01791	0.00000		
	0.300	0.00000	0.00946	0.01393	0.01567	0.01708	0.00000		



E 6

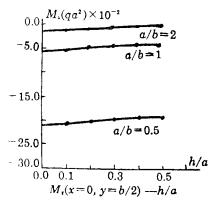


图 7

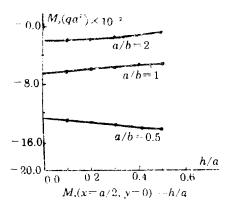


图 8

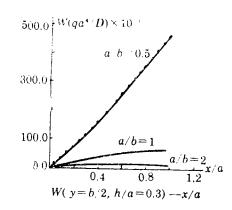
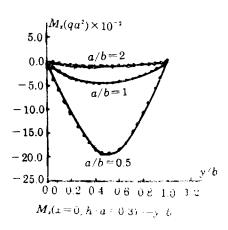


图 9



圐 10

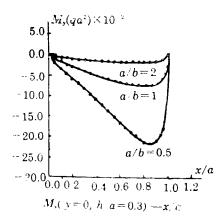


图 11

附 录

为计算实际系统的挠曲面方程,兹给出基本解的诸边界转角、切片和扭矩如下。

$$\omega_{1z0} = -\frac{1}{Db} \sum_{\mathbf{m}=1}^{\infty} \left[\beta_{\mathbf{m}} a \; \operatorname{cth} \beta_{\mathbf{m}} a - \beta_{\mathbf{m}} (a - \xi) \operatorname{cth} \beta_{\mathbf{m}} (a - \xi) \right] \frac{ \operatorname{sh} \beta_{\mathbf{m}} (a - \xi)}{\beta_{\mathbf{m}}^2 \operatorname{sh} \beta_{\mathbf{m}} a}$$

$$-\sin\beta_{\pi}\eta\sin\beta_{\pi}y \tag{A.1}$$

$$Q_{1\pi^0} = \frac{2}{b} \sum_{n=1}^{\infty} \frac{\sinh \beta_n (a - \xi)}{\sinh \beta_n a} \sin \beta_n \eta \sin \beta_n y \tag{A.2}$$

$$M_{1y_{\pi^0}} = -\frac{1-\nu}{b} \sum_{n=1}^{\infty} \left[\beta_n a_0 \mathrm{cth} \beta_n a - \beta_n (a-\xi) \mathrm{cth} \beta_n (a-\xi) \right] \frac{\mathrm{sh} \beta_n (a-\xi)}{\beta_n \mathrm{sh} \beta_n a}$$

$$\sin \beta_{n} \eta \cos \beta_{n} y \tag{A.3}$$

$$\omega_{1_{\pi}n} = \frac{1}{D\bar{b}} \sum_{n=1}^{\infty} (\beta_n a_{\text{cth}} \beta_n a - \beta_n \xi_{\text{cth}} \beta_n \xi) \frac{\sinh \beta_n \xi}{\beta_n^2 \sinh \beta_n a} \sin \beta_n \eta \sin \beta_n y \tag{A.4}$$

$$Q_{1xa} = -\frac{2}{b} \sum_{n=1}^{\infty} \frac{\sinh \beta_n \xi}{\sinh \beta_n a} \sin \beta_n \eta \sin \beta_n y \tag{A.5}$$

$$M_{1yzz} = \frac{1-\nu}{b} \sum_{n=-\infty}^{\infty} (\beta_n a_0 + h \beta_n a_0 - \beta_n \xi_0 + h \beta_n \xi) \qquad \frac{\sinh \beta_n \xi}{\beta_n \sinh \beta_n a} \quad \sin \beta_n \eta \cos \beta_n y$$
(A.6)

$$\omega_{1y0} = -\frac{1}{Da} \sum_{m=1}^{\infty} \left[\alpha_m b \operatorname{cth} \alpha_m b - \alpha_m (b-\eta) \operatorname{cth} \alpha_m (b-\eta) \right] \frac{\operatorname{sh} \alpha_m (b-\eta)}{a_{-}^2 \operatorname{sh} \alpha_m b}$$

$$\sin \alpha_m \xi \sin \alpha_m x$$
 (A.7)

$$Q_{1y0} = \frac{2}{a} \sum_{m=1}^{\infty} \frac{\sinh \alpha_m (b-\eta)}{\sinh \alpha_m b} \sin \alpha_m \sin \alpha_m x \tag{A.8}$$

$$M_{1_{\sigma}y_0} = -\frac{1-\nu}{a} \sum_{m=1}^{\infty} \left[\alpha_m b \operatorname{cth} \alpha_m b - \alpha_m (b-\eta) \operatorname{cth} \alpha_m (b-\eta) \right] \frac{\operatorname{sh} \alpha_m (b-\eta)}{\alpha_m \operatorname{sh} \alpha_m b}$$

$$\sin \alpha_m \xi \cos \alpha_m x$$
 (A.9)

$$\omega_{1Vb} = \frac{1}{Da} \sum_{m=1}^{\infty} (\alpha_m b \operatorname{cth} \alpha_m b - \alpha_m \eta \operatorname{cth} \alpha_m \eta) + \frac{\operatorname{sh} \alpha_m \eta}{\alpha_m^2 \operatorname{sh} \alpha_m b} + \sin \alpha_m \xi \sin \alpha_m x$$
 (A.10)

$$Q_{1yb} = -\frac{2}{a} \sum_{m=1}^{\infty} \frac{-\sinh \alpha_m \eta}{\sinh \alpha_m b} \sin \alpha_m \xi \sin \alpha_m x \tag{A.11}$$

$$M_{1_{syb}} = \frac{1 - \nu}{a} \sum_{m=1}^{\infty} (\alpha_m b \operatorname{cth} \alpha_m b - \alpha_m \eta \operatorname{cth} \alpha_m \eta) \frac{\operatorname{sh} \alpha_m \eta}{\alpha_m \operatorname{sh} \alpha_m b} \operatorname{sin} \alpha_m \xi \operatorname{cos} \alpha_m x \tag{A.12}$$

参考文献

- [1] 付宝连,一个求解位移方程的新方法,东北重型机械学院第三届学术报告会(1981)。
- [2] 付宝连,应用功的互等定理求解具有复杂边界矩形板的挠曲面方程,应用数学和力学,3(3)(1982),315—325
- [3] Reissner, E., The effect of transverse shear deformation on the bending of elastic plates, Journal of Applied Mechanics, 12, June (1945), 69-77.

- [4] 程昌钧、杨骁、三边夹紧一边自由的矩形厚板的弯曲,应用数学和力学,11(6)(1990),505—520。
- [5] Salerno, V. L. and M. A. Goldberg, Effect of shear deformation on the bending of rectangular plates, J. Appl. Mech., 27, March (1960), 54-58.

Reciprocal Theorem Method for Solving the Problems of Bending of Thick Rectangular Plates

Fu Bao-lian Tan Wen-feng
(Yanshan University, Qinhuangdao, 066004)

Abstract

In this paper, reciprocal theorem method (RTM) is generalized to solve the problems of bending of thick rectangular plates based on Reissner's theory.

First, the paper gives the basic solution of the bending of thick rectangular plates, and then the exact analytical solution of the bending of thick rectangular plate with three clamped edges and one free edge under uniformly distributed load is found by RTM, finally, we analyze numerical results of the solution.

Key words reciprocal theorem method, basic solution, bending of thick rectangular plate, Reissner's theory