螺位错场的非线性力学解*

潘客麟 陈至达

(上海 同济大学工程力学系) (中国矿业大学北京研究生部)

(1994年6月7日收到)

摘要

本文以非线性连续体几何场论为理论基础,分析了无限大体中一个螺位错引起的应力场。结果揭示了非线性高阶效应的影响。当不考虑高阶效应时,所求得的应力场可退化为经典线弹性理论的结果。本文还对螺位错引起的体力矩场进行了求解。获得了无限大体中单个螺位错引起的体力矩的解析表达式。作为理论结果的应用,本文研究了界面附近螺位错的应力场和体力矩场。揭示了它们对界面力学性能的影响。

关键词 非线性几何场论 螺位错 体力矩

一、引 言

固体缺陷及其对材料力学性质的影响一直是固体物理、冶金学和材料科学的一个重要的 研究课题。固体的宏观力学性质与其微观结构,特别是晶体缺陷密切相关。要解释固体的宏 观力学性质就必须深入地对材料微观的力学性质加以研究。有关课题的综述性描述已由 Mura⁽¹⁾在其经典著作《固体缺陷的微观力学》中给出。事实上,在金属、岩体、结构陶 瓷、复合材料等实际工程材料中都存在着大量的微观或宏观的缺陷,而这些缺陷却对材料的 力学性质起到决定性的作用。不考虑材料中缺陷时其力学性能与实测的力学性能相差几个数 量级。这说明固体中缺陷对材料力学性质起到关键作用。这就要求人们对包括缺陷在内的材 料的微结构加以深入地研究。而关于固体缺陷的诸多理论中研究得最多,最深入又最能解释 材料的各种力学性质的当属位错理论。

早在本世纪初Volterra等人就提出了连续介质中位错的概念。1934年Taylor等人在前 人许多实验观察的基础上分别独立地提出晶体中位错的概念和图象^[2],并首次将弹性体位错 和晶体位错在理论上联系起来。1938年Burgers 又提出螺位错 (screw dislocation)的概 念^[3]。50年代Kröner等人提出并发展了连续体位错理论^[4]。从而位错理论进入了连续体力 学,成为连续体力学的一部分。最近段祝平等用四维微分流形处理了动力学问题^[5]。

以S-R分解定理和拖带坐标系为基础的新的非线性有限变形理论是陈至达教授于1969年 首次提出的⁽⁶⁾。最近出版的《有理力学》一书对该理论进行了全面系统的总结^[7]。新理论已

*1993年9月17日第1次收到。

1037

在计算力学、断裂力学、实验力学、生物力学等诸多领域中获得了成功的应用^[8~10]。解决 了大量小变形理论无法解决的问题,解释了许多小变形理论无法解释的现象。

本文用非线性有限变形理论研究了位错形成的转动场的特性。首先根据螺位错场的几何 特性建立了其变形几何模型。在所建立的几何模型基础上对其非线性几何场进行了详尽求 解。考虑到非线性问题求解的困难性,物性方程仍采用虎克定律形式。所获得的结果反映了 由于几何非线性引起的高阶效应的影响。这种几何非线性是由于位错周围的畸变场引起的。 畸变场的大小与位错的形成和材料的性质有关。当畸变较小时本文结果与经典结果相一致。 本文还应用转动物性方程求得了体力矩场。最后计算了界面附近的应力和体力矩。本文所获 得的结果对固体缺陷引起的非线性畸变场的分析提供了理论依据,同时也对实验中观察到的 晶界转动开裂现象提供了理论解释。

二、基本理论

以S-R分解定理为基础的非限性有限变形理论是陈至达教授首先建立起来并得以迅速发展的。该理论成功地解决了如何准确地标定变形体中一点邻域的有限变形状态及局部转动这一数学和力学难题。从而在实验力学、计算力学、断裂力学、生物力学等领域中都获得了成功的应用。

新理论有两个突出的特点。其一是将 Euler 动坐标法推广至描述变形体运动的 拖 带坐标法。在有限变形条件下,拖带坐标法明确反映了物体变形 前后 的关 系。Muranghan, Brillorin, Synge 和钱伟长等都在有限变形分析中引用过拖带坐标系。新理论的第二个特 点是采用对称的应变张量与正交的转动张量直和的形式代替传统的极分解形式描述物体的有 限变形。这种分解形式克服了后者带来的左、右伸长张量的不同一性。使应变定义更加严谨 和直观。非线性有限元计算已显示出这种分解的优越性。

采用拖带坐标描述法时,首先在三维欧氏空间*E*⁸ 中选定一个固定坐标参考 系{*X*⁴}。然 后取嵌含在变形体中的拖带坐标{*x*ⁱ}。物体在初始位形的拖带坐标 与{*X*⁴}同胚。若令 r₀ 和r 分别表示变形体内任一点P在变形前后的位置。则有

$$\mathbf{r} = \mathbf{r}_0 + \mathbf{u} \tag{2.1}$$

拖带系变形前后的协变基矢分别定义为:

$$\mathbf{\hat{g}}_i = \frac{\partial \mathbf{r}_0}{\partial x^i}$$
, $\mathbf{g}_i = \frac{\partial \mathbf{r}}{\partial x^i}$

由(2.1)式可得:

$$\mathbf{g}_i = (\delta_i^i + u^j |_i) \dot{\mathbf{g}}_j = F_i^j \dot{\mathbf{g}}_j$$

根据S-R分解定理⁽⁷⁾,对物理可能的运动变换,变形梯度F可以分解为对称张量S和正 交张量R之直和,即

其中

$$S = (1/2) (\nabla \mathbf{u} + \nabla \mathbf{u}^{T}) - LL(1 - \cos \theta)$$

$$R = I + (1/2) (\nabla \mathbf{u} - \nabla \mathbf{u}^{T}) + LL(1 - \cos \theta)$$

$$\theta = \pm \arcsin[(1/2) \sqrt{(\nabla \mathbf{u} - \nabla \mathbf{u}^{T})^{2}}]$$

$$(2.3)$$

(2,2)

R代表转动,S代表应变,u是位移矢量,L是方向矢量,L是单位张量,G代表平均整旋角。

它们的物理分量为17:

其中括号内的重复指标表示不求和。广义Hooke定律可表示为:

$$\hat{\sigma} = 2G\left(\$ + \frac{\nu}{1 - 2\nu} \operatorname{tr}\$l\right) \tag{2.6}$$

其中 $Gn \vee Gn \vee Gn$ 为材料的剪切模量和波松比。 \hat{s} 为应变的物理分量。 $trs = \hat{s}_1 + \hat{s}_2 + \hat{s}_3$ 为应 变物理分量 \hat{s} 的迹。以上(2.4)~(2.6)加上求解问题的边界条件构成求解非线性问题的基本 公式。

三、螺位错场的有限变形解

在经典弹性理论框架下位错核心将出现奇异。因此核心区是无法 用 经 典 弹性理论求解 的。处理这类问题的一种有效的理论是非局部弹性理论。有关非线性几何场下螺位错的非局 部解将作另文讨论。在此为使问题易于求解,我们将位错核心区的变形用一与 r 成线性关系 的函数代替。因此螺位错场的位移可用一统一的式子表示(见(3.3)式)。求解后再 将 核心部 分除去。

螺位错场的力学模型如图 1 所示.显然采用柱坐标较为方便.设缺陷场产生之前体内某 点**P**的柱坐标为 $P(r, \theta, z)$,基标矢量为 $\{g_1, g_2, g_3\}$,其中1,2,3分别与 r, θ, z 对应. 产生畸变后**P**点变成为 $P'(r, \theta, Hz)$,即z方向伸长了H,变形情况如图 1 所示.点**P**可 表示为,

$$r_{p} = r\cos\theta \mathbf{i} + r\sin\theta \mathbf{j} + z\mathbf{k}$$

(3.1)

及

 $dr_{P} = (\cos\theta i + \sin\theta j)dr + r(-\sin\theta i + \cos\theta j)d\theta + kdz$ r_的线元平方可表示为,

 $d\mathbf{\hat{s}}^2 = d\mathbf{r}_P \cdot d\mathbf{r}_P = d\mathbf{r}^2 + r^2 d\theta^2 + dz^2$

于是,

 $\dot{g}_{(11)} = 1, \quad \dot{g}_{(12)} = r^2, \quad \dot{g}_{(33)} = 1$

变形后,P'可表示为

 $\mathbf{r}_{\mathbf{P}'} = \mathbf{r} \cos\theta \, \mathbf{i} + \mathbf{r} \sin\theta \, \mathbf{j} + (z + H) \mathbf{k}$

其中

$$H = \begin{cases} r^{t}gk\theta, & 0 \leq r < r_{0} \\ r_{0}tgk\theta, & r \geq r_{0} \end{cases}$$
(3.3)

其中常数 $k = \operatorname{arc} \operatorname{tg}(b/r_0)/2\pi$,b是通常的Burgers向量。于是 r_P 的线 元平方为,

 $ds^2 = dr^2 + r^2 d\theta^2 + (dz + tgk\theta dr + rksec^2 k\theta d\theta)^2$

 $g_{(11)} = (1 + \mathbf{t}g^2 k\theta) = \sec^2 k\theta, \ g_{(22)} = (1 + k^2 \sec^4 k\theta)r^2, \ g_{(33)} = 1$

图 1 螺位错误型

由(3.1)和(3.2)可求得位移场	
$\mathbf{u} = \mathbf{r}_{P'} - \mathbf{r}_{P} = H\mathbf{k}$	(3.4)
或 $u = u^i g_i$	(3.5)
其中g,=∂r _P /∂x ⁱ ,其分量形式为	
$\mathbf{g}_r = \frac{\partial \mathbf{r}_P}{\partial r} = \cos\theta \mathbf{i} + \sin\theta \mathbf{j}, \ \mathbf{g}_{\theta} = \frac{\partial \mathbf{r}_P}{\partial \theta} = r\sin\theta \mathbf{i} + r\cos\theta \mathbf{j}, \ \mathbf{g}_z = \frac{\partial \mathbf{r}_P}{\partial z} = \mathbf{k}$	
将以上结果代入(3.5)得,	
$\mathbf{u} = (\cos\theta \mathbf{u}^r - r\sin\theta \mathbf{u}^\theta)\mathbf{i} + (\sin\theta \mathbf{u}^r + r\cos\theta \mathbf{u}^\theta)\mathbf{j} + \mathbf{u}^z\mathbf{k}$	
上式应与(3.4)式相等,于是有	
$\cos\theta u^r - r \sin\theta u^\theta = 0, \ \sin\theta u^r + r \cos\theta u^\theta = 0, \ u^z = H$	
由此可解得位移分量	
$\boldsymbol{u}^{\boldsymbol{r}} = \boldsymbol{u}^{\boldsymbol{\theta}} = \boldsymbol{0},$	
$H = r^{t} g k \theta, \qquad (0 \leq r < r_{0})$	(2, 0)
$u = \int_{r_0 tgk\theta} (r \ge r_0)$	(3.6)
位移梯度可由下式求出172,	
$\boldsymbol{u^{i}} _{j} = \partial \boldsymbol{u^{i}} / \partial \boldsymbol{x^{j}} + \boldsymbol{\Gamma}_{i}^{i} \boldsymbol{u^{i}}$	(3.7)
其中柱坐标下的Christoffel符号可被表示为	
$\Gamma^{r}_{\theta\theta} = -r, \Gamma^{\theta}_{r\theta} = \Gamma^{\theta}_{\theta r} = 1/r, \qquad \pm \mathrm{i} \mathrm{E} \Gamma^{i}_{jk} = 0$	
于是由(3.7)有	
$u^r _r = u^r _{\theta} = u^r _z = u^{\theta} _r = u^{\theta} _{\theta} = u^{\theta} _z = u^z _z = 0$	
$ u^{z} _{r} = tgk\theta, u^{z} _{\theta} = krsec^{2}k\theta, \qquad \exists 0 \leq r < r_{0}$	
$\begin{cases} u^{z} _{a} = 0, \qquad u^{z} _{a} = kr_{a} \operatorname{sec}^{2} k\theta, \qquad \exists r \geq r_{a} \end{cases}$	
其物理分量为	
$\hat{u}^{z} _{\theta} = k/\sqrt{\cos^{4}k\theta} + k^{2}, \hat{u}^{z} _{r} = \sin k\theta, \exists 0 \leq r < r_{0},$	
$\hat{u}^{z} _{\theta} = kr_{0}/r\sqrt{\cos^{4}k\theta} + k^{2}, \hat{u}^{z} _{r} = 0, \qquad $	(3.8)
当r≥r₀ 将此结果代入(2.5)式即可求出平均整旋角为,	
$\underline{b} = \arcsin\left\{\frac{1}{2}[(\hat{u}^2 _{r})^2 + (\hat{u}^2 _{\theta})^2]^{1/2}\right\}$	
$\left(\frac{1}{2}\right)^{-1} = \left(\frac{1}{2}\left(\frac{1}{2}\right)^{-1} + \frac{1}{2}\left(\frac{1}{2}\right)^{-1} + \frac{1}{2}\left(\frac{1}{2}\right)^{-$	
$= \operatorname{arc} \operatorname{sin} \left\{ \frac{1}{2} \left[\operatorname{sin} R\theta + R^{2} / (R^{2} + \cos R\theta) \right] \right\}, 0 \leq r < r_{0}$	(3.9)
$\underline{\ell} = \arcsin\left\{\frac{1}{2} \boldsymbol{u}^2 _{\boldsymbol{\theta}}\right\}$	
$= \arcsin\left\{\frac{1}{2}kr_0/r\sqrt{\cos^4k\theta} + k^2\right\}, \qquad r \ge r_0$	
应变分量也能由(2.5)式求出,	
$\hat{S}_{z}^{T} \equiv \hat{S}_{1}^{1} = \hat{S}_{1}^{3} = \frac{1}{2} (\hat{a}_{1}^{3} _{1}) + \hat{L}_{k}^{3} \hat{L}_{1}^{k} (1 - \cos \hat{z}) = \frac{1}{2} \sin k\theta$	

$$\hat{S}_{z}^{\theta} = \frac{1}{2} \left(\hat{a}^{3} \right|_{2} \right) + \hat{L}_{z}^{3} \hat{L}_{z}^{k} \left(1 - \cos \theta \right) = \frac{1}{2} k / \sqrt{\cos^{4} \theta + k^{2}}$$

$$(0 \leq r < r_{0}) \qquad (3.10)$$

$$\begin{cases} \mathbf{S}_{1}^{*} \equiv \mathbf{S}_{3}^{*} = \mathbf{S}_{1}^{*} = 0 \\ \mathbf{S}_{2}^{*} \equiv \mathbf{S}_{3}^{*} = \mathbf{S}_{2}^{*} = \frac{1}{2} k r_{0} / r \sqrt{\cos^{4} \theta + k^{2}} \end{cases} \qquad (r \ge r_{0}) \qquad (3.11)$$

其中**8**; 已取为零,因为当r₀≫b时它是参数 k 的高阶小量(详见[10])。将应变分量代入(2.6) 给出的本构关系,我们有

$$\hat{\sigma}_{\theta}^{*} \equiv \hat{\sigma}_{1}^{3} = 2G\hat{S}_{1}^{3} = G\sin k\theta$$

$$\hat{\sigma}_{\theta}^{*} \equiv \hat{\sigma}_{2}^{3} = 2G\hat{S}_{2}^{3} = Gk/\sqrt{\cos^{4}k\theta + k^{2}}$$

$$\left(0 \leqslant r < r_{0} \right)$$

$$(3.12)$$

$$\hat{\sigma}_{\theta}^{*} \equiv \hat{\sigma}_{2}^{3} = 0$$

$$\hat{\sigma}_{\theta}^{*} \equiv \hat{\sigma}_{a}^{*} = G k r_{0} / r \sqrt{\cos^{4} k \theta + k^{2}}$$

$$\left\{ r \geqslant r_{0} \right\} \qquad (3.13)$$

其中(3.13)为有效解,现在让我们讨论这个解。当r》r。时有,

$$\hat{\sigma}_{\theta}^{z} = Gkr_{0}/r$$

对小变形情形 k ≃ b/2πr₀,于是非零应力为

 $\hat{\sigma}_{\theta}^{s} = b/2\pi r$

这便是经典小变形理论的结果。由此可见(3.13)是考虑高阶效应后螺位错场的精确解。

四、螺位错转动场中的体力矩

关于体力矩的概念早在本世纪初叶E. Cosserat与 F. Cosserat 就已经提出. 在文献 [7]中陈至达教授根据非对称应力基本理论作了详细说明.体力矩的概念是非线性有限变形 理论的一个重要组成部分。它对材料晶格转动,微断裂和微损伤的研究都是非常重要的[8, 9]。它不但和材料的转动参量相联系,能够解释材料的微转动效应,而且与固体电磁场、血 液流动中红白细胞的旋转运动,裂纹尖端的位错力偶场等近代力学问题都有着根本的关系。 本节将详细讨论螺位错产生的体力矩,其定义及物理 意义已在[10]中作详细讨论.根据 [10],体力矩是与非对称切应力对应的.根据第三节中有关螺位错的数学、力学特征可以看 出螺位错场是以剪切为主要效应的.在微转动情况下(3.6)式给出近似表达式

$$\boldsymbol{u}^{\boldsymbol{x}} = \boldsymbol{c}\boldsymbol{\theta}, \quad \boldsymbol{u}^{\boldsymbol{r}} = \boldsymbol{u}^{\boldsymbol{\theta}} = \boldsymbol{0} \tag{4.1}$$

其中 ¢ 为常数。再由(2.5)式得,

$$L_{j}^{i}\sin\theta = \frac{1}{2}(u^{i}|_{j} - u^{j}|_{i}) \tag{4.2}$$

其大小为

$$|L_{j}^{*}\sin\underline{\theta}| = \sin\underline{\theta} = \pm \frac{1}{2} [(u^{1}|_{2} = u^{2}|_{1})^{2} + (u^{2}|_{3} - u^{3}|_{2})^{2} + (u^{3}|_{1} - u^{1}|_{3})^{2}]^{1/2}$$

$$(4.3)$$

将(4.1)代入(4.3),得

$$\sin \theta = \pm \frac{1}{2} [(u^3|_1)^2 - (u^3|_2)^2]^{1/2}$$
(4.4)

其中"十"表示右螺位错。于是有

$$2\sin\underline{\theta} = [(\partial u^z/\partial r)^2 + (\partial u^z/r\partial\theta)^2]^{1/2} = \nabla u^z$$
(4.5)

由(4.1)可得,

$$|\nabla u^z| = c |\nabla \theta|$$

与(4.5)比较可得,

$$=\frac{1}{c}|\nabla u^{z}|=\frac{2}{c}\sin\theta \qquad (4.6)$$

根据转动物性方程(参见[10]sec.3.2(12)),我们可以求得体力矩和位移梯度之间的关系:

$$m_{j}^{i} = \kappa L_{j}^{i} |\nabla \theta| = \kappa \frac{(u^{i}|_{J} - u^{j}|_{i})/2}{\sin \theta} - |\nabla \theta| = \frac{\kappa}{c} (u^{i}|_{J} - u^{j}|_{i})$$
(4.7)

其中 κ 是微转动模量, c 是常数, 由位错特性决定。对螺位 错, c=b/2π。将 c 代入(4.7)可得,

$$m_{j}^{i} = \frac{2\pi\kappa}{b} (u^{i}|_{j} - u^{j}|_{i})$$
(4.8)

其物理分量为

$$\boldsymbol{\hat{m}}_{i}^{i} = \frac{2\pi\kappa}{b} \left(\boldsymbol{\hat{u}}^{i} |_{j} - \boldsymbol{\hat{u}}^{j} |_{i} \right)$$

$$(4.9)$$

或

$$\hat{m}_{1}^{3} = -\hat{m}_{3}^{1} = \frac{2\pi\kappa}{b} \hat{u}^{3}|_{1}, \quad \hat{m}_{2}^{3} = -\hat{m}_{3}^{2} = \frac{2\pi\kappa}{b} \hat{u}^{3}|_{2}$$
 (4.10)

 $\begin{array}{c} \diamondsuit \qquad A_1 = \boldsymbol{u}^3 |_1 = \boldsymbol{u}^z |_{\boldsymbol{s}}, \quad A_2 = \boldsymbol{u}^3 |_2 = \boldsymbol{u}^z |_{\boldsymbol{s}} \end{array}$

并考虑微转动时可得

$$A_1 = \hat{u}^z|_r = 0, \quad A_2 = \hat{u}^z|_\theta = b/2\pi r$$
 (4.11)

于是(4.10)成为

$$\hat{m}_{1}^{3} = -\hat{m}_{3}^{1} = 2\pi\kappa A_{1}/b \hat{m}_{2}^{3} = -\hat{m}_{3}^{2} = 2\pi\kappa A_{2}/b$$

$$(4.12)$$

相应于体力矩的反对称应力为

$$\begin{pmatrix} \hat{\sigma}_{1}^{3} = -\hat{\sigma}_{1}^{3} = -\kappa\rho\pi A_{1}/b \\ \hat{\sigma}_{3}^{2} = -\hat{\sigma}_{3}^{3} = -\kappa\rho\pi A_{2}/b \\ \begin{pmatrix} \sigma \\ \sigma \end{pmatrix} \end{pmatrix}$$

$$(4.13)$$

其中ρ是单位体积质量。

五、界面处体力矩

本节将讨论界面处由于螺位错引起的体力矩。它可揭示复合材料界面断裂的微观机制。 对图 2 所示的直界面,我们有下面的转换关系,

$$A_{z} = \hat{u}^{z}|_{s} = -\hat{u}^{z}|_{\theta}\sin\theta = -\frac{b}{2\pi} \frac{y}{r^{2}}$$
$$A_{y} = \hat{u}^{z}|_{y} = \hat{u}^{z}|_{\theta}\cos\theta = \frac{b}{2\pi} \frac{x}{r^{2}}$$

其中

$$x=r\cos\theta$$
, $y=r\sin\theta$, $r^2=x^2+y^2$

将A.和A,代入(4_13),得

$$\sigma_z^{\mathbf{x}} = -\sigma_z^{\mathbf{z}} = -\kappa \rho y/r^2, \quad \sigma_z^{\mathbf{y}} = -\sigma_y^{\mathbf{z}} = -\kappa \rho \mathbf{x}/r^2 \tag{5.1}$$

其中反对称应力的记号已省略.

让我们考虑一个如图 2 所示的双相介质的复合材料。两种材料的微转动模量分别为K1和 K2、考虑一个右螺位错 A, 带有Burgers矢量b, 位于材料 [中并离界面 / 且平行于 z 轴,为

1042

图 2 双相材料中界面附近的螺位错

图 3 体力矩沿界面的分布(x=0)

了保持界面的连续性,在材料I,A的映象处放一个Burgers矢量为 γb 的映象位错C。材料 I中的应力是由于A和C两个位错场引起的。为了获得I中的应力场,在I中距界面I处放 一个Burgers向量为 βb 的映象位错B。由(4.1)可求得I,I中的线性位移场,

$$(u_3)_1 = \frac{b}{2\pi} \left(\operatorname{arctg} \frac{y}{x+l} + \gamma \operatorname{arctg} \frac{y}{x-l} \right)$$
(5.2)

$$(u_s)_I = \frac{b}{2\pi} \beta \operatorname{arctg} \frac{y}{x+l}$$
(5.3)

位移连续性条件要求,

 $(u_3)_1 = (u_3)_1, \quad \text{ a } x = 0$

由此可得

$$\beta = 1 - \gamma \tag{5.4}$$

由(5.1)~(5.3)可得应力分量为,

$$(\sigma_{13})_{I} = -\frac{\kappa_{1}b}{2\pi} \begin{bmatrix} y \\ (x+l)^{2}+y^{2} \end{bmatrix} + \frac{\gamma y}{(x-l)^{2}+y^{2}} \end{bmatrix}$$

$$(\sigma_{23})_{I} = \frac{\kappa_{1}b}{2\pi} \begin{bmatrix} x+l \\ (x+l)^{2}+y^{2} \end{bmatrix} + \frac{\gamma (x-l)}{(x-l)^{2}+y^{2}} \end{bmatrix}$$

$$(\sigma_{13})_{I} = -\frac{\kappa_{2}b}{2\pi} \begin{bmatrix} \beta y \\ (x+l)^{2}+y^{2} \end{bmatrix}$$

$$(\sigma_{23})_{I} = \frac{\kappa_{2}b}{2\pi} \begin{bmatrix} \beta (x+l) \\ (x+l)^{2}+y^{2} \end{bmatrix}$$

$$(5.5)$$

界面处应力连续性要求

由此可得

 $\kappa_2 \beta = \kappa_1 (1+\gamma) \tag{5.6}$

联立(5.4)和(5.6)可得

 $\gamma = (\kappa_2 - \kappa_1) / (\kappa_2 + \kappa_1), \quad \beta = 2\kappa_1 / (\kappa_2 + \kappa_1)$ 由体力矩和反对称应力的关系(4,13)可求得体力矩的表达式,

$$(m_{3}^{1})_{I} = -\frac{\kappa_{1}b}{\rho\pi} \left[-\frac{y}{(x+l)^{2}+y^{2}} + \frac{\gamma y}{(x-l)^{2}+y^{2}} \right]$$

$$(m_{3}^{2})_{I} = \frac{\kappa_{1}b}{\rho\pi} \left[-\frac{x+l}{(x+l)^{2}+y^{2}} + \frac{\gamma (x-l)}{(x-l)^{2}+y^{2}} \right]$$

$$(m_{3}^{1})_{I} = -\frac{\kappa_{2}b}{\rho\pi} \frac{\beta y}{(x+l)^{2}+y^{2}}$$

$$(m_{3}^{2})_{I} = \frac{\kappa_{2}b}{\rho\pi} \frac{\beta (x+l)}{(x+l)^{2}+y^{2}}$$

$$(5.7)$$

图 3 给出了界面处 (x=0) 的体力矩分布规律。这里我们 巳 假 设 κ₂=2κ₁, 于 是 γ=1/3, β=2/3。结果显示: 当位错靠近界面时(l→0),体力矩有一极大值。当此极值达到材料临界 强度时,界面处产生转动开裂。

六、讨 论

本文采用非线性有限变形理论分析了螺位错在固体材料中引起的转动效应。给出了螺位 错场的非线性有限变形解和螺位错转动场中体力矩的表达式。主要结论如下:

(1) 采用了比线弹性小变形解更为精确的力学方法求解,同时选用了比经典小变形的 螺位错模型更加一般化的螺位错模型。(3.13)式给出的应力场是由非线性有限变形理论得到 的精确解。√cos⁴kθ+k²是高阶效应项。考虑高阶效应项还会出现正应力(在正文求解时已 忽略)

$$\hat{\sigma}_{1}^{1} = \frac{2G\nu}{1-2\nu} \hat{S}_{3}^{1} = -\lambda \left(\sin^{2}k\theta + \frac{k^{2}}{k^{2} + \cos^{4}k\theta} \right) - \frac{1}{4(1+\cos^{2}\theta)}$$
$$\hat{\sigma}_{3}^{2} = -2G \frac{1-\nu}{1-2\nu} \left(\sin^{2}k\theta + \frac{k^{2}}{k^{2} + \cos^{4}k\theta} \right) - \frac{1}{4(1+\cos^{2}\theta)}$$

高阶效应引起的正应力相对切应力是高阶无穷小。只有用精确的非线性有限变形理论才能获 得应力的高阶效应。

(2) 得到螺位错转动场的平均整旋角的解析表达式。平均整旋角的概念用经典小变形 理论是无法得到的。关于它的物理意义和定义可参考[7]的有关章节。这里仅对螺位错场的 平均整旋角进行讨论。由于平均整旋角不等于零,因此我们得出结论:螺位错周围确实存在 着有限变形体的转动。位错平均整旋角的表达式为(3.9),它给出了平均整旋角和极坐标 θ 角 的关系。例如当 $\theta = 0$, π 时, $\theta = \arcsin[k/2\sqrt{1+k^2}]$ 。可以如此清楚地描述位错的转动效 应,这正是非线性有限变形理论优越性的反映。

(3) 经过简化后非线性有限变形的螺位错解可以返回到经典小变形结果,

$$\sigma_{z\theta} \approx G\left(\frac{b}{2\pi r_0}\right) r_0 / r = \frac{Gb}{2\pi r}$$

(4) 根据转动物性方程推导了螺位错形成的体力矩。结果表明,螺位错转动场是由螺 位错非对称应力场形成的。它所产生的体力矩是由螺位错这种特殊的固体缺陷存在形式所决 定的。实验已证明裂纹的扩展是与材料晶格的微转动有关^(8,11)。因此固体材料中体力矩的研 究是有实际背景的。

参考文献

- [1] Mura, T., Micromechanics of Defects in Solids, Martinus Nijhoff Publisher, The Hague & London (1982).
- [2] Hirth, J. P. and J. Lothe, Theory of Dislocations, John-Wiley & Sons, 2nd ed. (1982).
- [3] Nabarro, F. R. N., Theory of Crystal Dislocations, Clarendon Press (1967).
- [4] Kröner, E., Kontiuumstheorie der Versetzungen und Eigenspannugen, Springer-Verlag, Berlin (1958).
- [5] Duan, Z. P., Duality principle of conservation laws in dislocation continuum, Int. J. Solids Structures, 21 (1985), 683-697.
- [6] 陈至达,连续介质有限变形力学几何场论,力学学报,(2)(1979),107-117.
- [7] 陈至达,《有理力学》,中国矿业大学出版社,徐州(1986).
- [8] Wang, C. and Z. D. Chen, Microrotation analysis applied to material cracking and toughness, Int. J. Fract., 54 (1992), 359-369.
- [9] Chen, Z. D., Energy principle of large deformation for living systems and application to biocybernetics, US National Congress of Applied Mechanics, Arigona USA, May 21-25 (1990).
- [10] 潘客麟,固体缺陷转动场中的非线性问题,博士学位论文,中国矿业大学北京研究生部(1991).
- [11] Kubo, T., Y. Wakaxhima, K. Amano and M. Nagai, Effects of crystallographic orientation of plastic deformation and SCC initiation in Zirconium alloys, Res Mechanica, 20 (1987), 217-234.

A Screw Dislocation by Nonlinear Continuum Mechanics

Pan Ke-lin

(Department of Engineering Mechanics, Tongji University, Shanghai)

Chen Zhi-da

(Beijing Graduate School, China University of Mining, Beijing)

Abstract

Based on the nonlinear geometry field theory of continuum mechanics, this paper analyzes the stress field due to a screw dislocation in an infinite medium. The results reveal the high-order effect of the stress field. When this effect is small, the result can be reduced to one of the classical linear elasticity. The body couple field of the screw dislocation is also investigated in this paper. The analytical expression of the body couple due to a screw dislocation is obtained with small rotation deformation. As the application of theoretical results, the stress and the body couple at the interface of the crystals are calculated when the screw dislocation is near the interface.

Key words nonlinear geometric field, screw dislocation, body couple