
一维不定常流方程的Harten解*

陈少军

(上海工业大学, 1992年4月2日收到)

摘要

为了利用一个二阶五点差分格式,对一维不定常流方程,计算强平面爆炸波遇不动固整正反 射的解,本文采用一定的技巧构造了边界和次边界的差分格式,并推算了初值的自**模拟解析解。** 同时对初值的奇性提出了处理方法,从而满意地得到了这个较为困难问题的计算结果。

本文提出和所利用的差分格式在处理激波间断问题方面具有实用意义。

关键词 一维不定常流 Harten解 差分格式

一、引言

平面强爆炸波的反射问题是爆炸能运用中的一个重要而典型的问题。虽然过去有许多祚 者计算过这个问题,例如,黄敦在文[2]中给出的,当t/k×10⁵<1.355时的一套分析解和吴 雄华在文[3]中利用分离奇性法所给出的数值解等,但由于这个问题具有激波,而且具有初 值和边界值,解有特征长度,激波是非定常的,因此计算的结果要么激波区域被拉宽,要么 波峰被抹平或间断附近出现振荡现象,不能令人满意。

本文选用A. Harten 在1983年提出的求解一类双曲型守恒方程组的五点差分格式, 来 解平面强爆炸波的正反射问题. 不仅检验了Harten 格式本身所具有的高精度性, 同时揭示 了它在解决平面强爆炸问题时的优越性. 这种优越性在于, 此格式既克服了一阶格式在计算 时, 间断过渡区宽的弱点,又避免了通常二阶格式在计算时, 间断附近出现振荡现象.

二、问题的数学提法

完全气体的一维不定常运动方程为

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0$$

$$\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = 0$$

$$\frac{\partial p}{\partial t} + u \frac{\partial p}{\partial x} + \gamma \frac{\partial u}{\partial x} = 0$$

• 潘立宙推荐。

(2,1)

其中 γ 为绝热常数.选取坐标如图1. 忽略原静 止空气的内能,则令 $t = -t_1(t_1 > 0)$ 时,在 $x = R_0$ 的平面上发生强爆炸,由方程(2.1)知,在 爆炸波达到壁x = 0处前,据量纲理论,问题的 主定参量中除 γ , t外,总共只有两个量纲独立 的常量,故向x = 0处刚性固壁传播的爆炸入射 波AO具有自模拟性.在t = 0时,入射波遇到壁 而反射,以OB表示.这样x = 0, $x = R_0 及 AO$, OB将X - T平面划分成三个区域. I 区有自模 **拟解**; I 区有不定常激波,但既无均熵,又无 自模拟性, I 区为爆炸前的静止空气.

另外,为了便于计算结果的比较和分析,本文就选用文[3]中的所有常数。即单位面积 上释放出的能量为: $E_0=1.077\times2.7349056\times10^8\times KJ/m^2$, $R_0=1m,K=1,t_1=2.1718193$ ×10⁻⁵×Ks.

三、方法概述与本文的工作

本文选用的Harten格式是五点差分型的,具有二阶精度,它的收敛和稳定性文[1]已 做了较详细的论证,本文不再赘述,只列出格式如下:

 $v_j^{n+1} = v_j^n - \lambda(\overline{f}_{j+\frac{1}{2}}^n - \overline{f}_{j-\frac{1}{2}}^n)$

$$\begin{split} J_{j+\frac{1}{2}}^{n} &= \frac{1}{2} [f(v_{j}) + f(v_{j+1})] + \frac{1}{2\lambda} \sum_{k=1}^{m} R_{j+\frac{1}{2}}^{k} [g_{j}^{k} + g_{j+1}^{k} - Q^{k} (v_{j+\frac{1}{2}}^{k} + r_{j+\frac{1}{2}}^{k}) a_{j+\frac{1}{2}}^{k}] \\ & \ddagger \frac{\Delta x}{\Delta t}, \quad v_{j+\frac{1}{2}}^{k} = \lambda a^{k} (v_{j+\frac{1}{2}}), \quad a_{j+\frac{1}{2}}^{k} = L_{j+\frac{1}{2}}^{k} \Delta_{j+\frac{1}{2}} v \\ & \Delta_{j+\frac{1}{2}} v = v_{j+1} - v_{j} \\ g_{i}^{k} = S_{i+\frac{1}{2}}^{k} \max[0, \min (|\tilde{g}_{i+\frac{1}{2}}^{k}|, \tilde{g}_{i-\frac{1}{2}}^{k} S_{i+\frac{1}{2}}^{k})] \\ & S_{i+\frac{1}{2}}^{k} = \varepsilon gn(\tilde{g}_{i+\frac{1}{2}}^{k}) \\ & \tilde{g}_{i+\frac{1}{2}}^{k} = 0.5 [Q^{k} (v_{i+\frac{1}{2}}^{k}) - (v_{i+\frac{1}{2}}^{k})^{2}] a_{i+\frac{1}{2}}^{k} \\ & r_{i+\frac{1}{2}}^{k} = \begin{cases} (g_{i+1}^{k} - g_{i}^{k}) / a_{i+\frac{1}{2}}^{k}, & \stackrel{\text{if }}{a} a_{i+\frac{1}{2}}^{k} \neq 0 \\ 0, & \stackrel{\text{if }}{a} a_{i+\frac{1}{2}}^{k} = 0 \end{cases} \\ & Q(x) = \begin{cases} \frac{x^{2}/4\varepsilon + \varepsilon}{|x|}, & \stackrel{\text{if }}{a} |x| \ge 2\varepsilon \end{cases} \end{split}$$

R[·]表示由矩阵[·]所得的右特征向量

a*是特征值

利用上述格式来求 II 区每一网格层上的解时,必须先已知此网格层上的左、右边界值及左、 右次边界值和方程的初值条件。

首先,我们很易知,对于Ⅰ区而言,右边界由Ⅰ区的解所定.而上面我们曾提及Ⅰ区解

有自模拟性, 故以下据力学中的量纲理论, 导出 I 区的自模拟解析解。

当使用欧拉坐标时,方程(2.1)待求的基本函数是速度u,密度ρ和压力p,由量纲理论中的Π定理,得到:

$$u = \frac{r}{t} \mathscr{V}, \quad \rho = \rho_1 \mathscr{K}, \quad p = \frac{\rho_1}{r^{-2} t^2} \mathscr{A}$$
(3.1)

其中۶, 米, メ为无量纲量, ρ,为爆炸前静止气体密度。

另外,在空气产生强爆炸波时,流动中产生强间断,气体在通过间断面时应满足质量、动量和能量守恒条件,将间断面一边记以下标1,另一边记下标2,则有:

$$\rho_{1}(u_{1}-c) = \rho_{2}(u_{2}-c) \rho_{1}(u_{1}-c)^{2} + p_{1} = \rho_{2}(u_{2}-c) + p_{2} \frac{1}{2}(u_{1}-c)^{2} + \frac{\gamma}{\gamma-1}\frac{p_{1}}{\rho_{1}} = \frac{1}{2}(u_{2}-c)^{2} + \frac{\gamma}{\gamma-1}\frac{p_{2}}{\rho_{2}}$$
(3.2)

其中c为冲击波速度.在此情况下,由量纲理论,唯一的无量纲自变量组合将为: $r^{3}t^{-2}/(E/\rho_{1})$. 由此得唯一的无量纲可变参量为:

$$\lambda = r/(E/\rho_1)^{1/3} t^{2/3}$$
(3.3)

对于冲击波,坐标 r_2 是时间的函数,而有量纲量t, ρ_1 和E不能组成无量纲组合,故有:

$$r_2 = (E/\rho_1)^{1/3} t^{2/3} \lambda^*$$
(3.4)

其中^λ*为任一非零常数。不失一般性,令^λ*=1,故对上式时间t求导得:

$$c = \frac{2}{3} \left(E/\rho_1 \right)^{1/3} t^{-1/3} \tag{3.5}$$

将(3.5)代入(3.2),并注意到在冲击波上有 $u_1 = 0$ 和 $a_1/c = 0$ (a_1 为未扰动介质中声速),则在 冲击波上有条件:

$$u_{2} = \frac{2}{\gamma+1}c = \frac{4}{3} \frac{1}{\gamma+1} \left(\frac{E}{\rho_{1}}\right)^{1/3} t^{-1/3} = \frac{4}{3} \frac{1}{\gamma+1} \left(\frac{E}{\rho_{1}}\right)^{1/2} r_{2}^{1/2}$$

$$\rho_{2} = \frac{\gamma+1}{\gamma-1}\rho_{1}$$

$$p_{2} = \frac{2}{\gamma+1}\rho_{1}c^{2} = \frac{8}{9} \frac{\rho_{1}}{\gamma+1} \left(\frac{E}{\rho_{1}}\right)^{2/3} t^{-2/3} = \frac{8}{9} \frac{E}{\gamma+1}r_{2}$$

$$(3.6)$$

将(3.1)和(3.6)中第一等式分别左、右相比,并引进新变量ミ=γメ/米,得:

$$\frac{r}{r_2} = \lambda, \quad \frac{u}{u_2} = f = \frac{3}{4} (\gamma + 1) \lambda \mathscr{V}$$

$$\frac{\rho}{\rho_2} = g = \frac{\gamma - 1}{\gamma + 1} \mathscr{K}, \quad \frac{p}{\rho_2} = h = \frac{9}{8} \frac{\gamma + 1}{\gamma} \lambda^2 \mathscr{K} \mathscr{K}$$

$$(3.7)$$

現在可知要解出r,ρ,u和p,只需先算出函数λ(𝒫), 𝔅(𝒫)和𝔅(𝒫). 将(3.1)和(3.3)代 入(2.1),并将𝔄用𝔅=𝑌𝔄'/𝔅'代换,对第一式中 𝔎 求导,对第二和三式求对数后再求 导,得到:

$$\frac{\mathcal{F}\left\{\left(\mathcal{F} + \gamma \mathcal{F} - 2\right)\left(\mathcal{F} - \delta\right)^{2} - \left(\gamma - 1\right)\mathcal{F}\left(\mathcal{F} - 1\right)\left(\mathcal{F} - \delta\right)\right\}}{-\left[2\left(\mathcal{F} - 1\right) + \mathcal{K}\left(\gamma - 1\right)\right]\mathcal{F}^{2}} \\
\frac{d\mathcal{F}}{d\mathcal{F}} = \frac{-\left[2\left(\mathcal{F} - 1\right) + \mathcal{K}\left(\gamma - 1\right)\right]\mathcal{F}^{2}}{\left(\mathcal{F} - \delta\right)\left[\mathcal{F}\left(\mathcal{F} - 1\right)\left(\mathcal{F} - \delta\right) + \left(\mathcal{K} - \mathcal{F}\right)\mathcal{F}\right]} \\
\frac{d\ln\lambda}{d\mathcal{F}} = \frac{\mathcal{F} - \left(\mathcal{F} - \delta\right)^{2}}{\mathcal{F}\left(\mathcal{F} - 1\right)\left(\mathcal{F} - \delta\right) + \left(\mathcal{K} - \mathcal{F}\right)\mathcal{F}} \\
\frac{d\ln\mathcal{K}}{d\ln\lambda} = \frac{1}{\mathcal{F} - \delta} \left(-\mathcal{F} - \frac{\left(\mathcal{F} - 1\right)\mathcal{F}\left(\mathcal{F} - \delta\right) + \left(\mathcal{K} - \mathcal{F}\right)\mathcal{F}}{\mathcal{F} - \left(\mathcal{F} - \delta\right)^{2}} \right) \right) \qquad (3.8)$$

其中δ=2/3, 第=2/3γ.利用冲击波所满足的重要的能量积分式:

$$\lambda \left[\rho \mathscr{V} + \left(\mathscr{V} - \frac{2}{3} \right) \left(\frac{\mathscr{K}}{2} - \mathscr{V}^2 + \frac{\mathscr{K}}{\gamma - 1} \right) \right] = 0$$

反复积分(3.8)即可求积得到 $\mathscr{E}(\mathscr{V})$, $\lambda(\mathscr{V})$ 和 $\mathscr{K}(\mathscr{V})$, 然后代入(3.7), 将(3.6)也代入 (3.7),且注意到: $\gamma < 7$; $\mathscr{V} \to 2/3\gamma$ 则得到 I 区的自模拟解析解:

$$t_{1} = \left[R_{0} \left(\frac{E}{\rho_{1}} \right)^{1/3} \right]^{3/2}, r_{2} = \left(\frac{E}{\rho_{1}} \right)^{1/3} (t+t_{1})^{2/3}, \lambda(x, t) = \frac{R_{0} - x}{r_{2}}$$

$$\lambda = (1.8V)^{-2/3} \left[6(2.1V-1) \right]^{2/9} \left[3(1-1.2)V \right]^{-5/9}$$

$$-u = V - V_{2} \times (1.8\lambda V)$$

$$\rho = \rho_2 [6(2 \cdot 1V - 1)]^{5/9} \left[6\left(1 - \frac{3}{2}V\right) \right]^{-10/3} [3(1 - 1 \cdot 2V)]^{25/9}$$

$$p = p_2(1.8V)^{2/3} [6(1-1.5V)]^{-7/3} [3(1-1.2V)]^{5/3}$$

而V需要由λ如下迭代求得:

$$V^{(0)} = \frac{5\lambda^4 + 30}{63}$$

$$V^{(i+1)} = V^{(i)} + \frac{3}{2} \cdot \frac{\lambda - \lambda(V^{(i)})}{\lambda(V^{(i)}) \left[\frac{1}{(3V^{(i)} - 10/7) - \frac{1}{V^{(i)} + \frac{1}{(1 - 1, 2V^{(i)})}} \right]}$$

这样,我们就可求 [区的右边界值了.

其次,我们还可用 I 区的上述解析解作为 II 区的初值,但必须注意的是,解析解此时对 原点是奇点,且为多值奇点.为此,采用如下两种避免奇点的方法:

(一) 任选Δt>0, 以Δt 这一层为初始计算时间。当然,这使得初值计算复杂化了。复杂的焦点在于找出Δt层上的激波位置。现在,我们从T=0.0 始算,找到Δt层上的激波所占网格点的位置(利用过去已有的算法,能够给出某些由Δt确定的激波位置表格,从而就可粗略定出激波所占网格位置),再用加权平均法于这些点的位置,从而就认为算出的新位置是激波较为确切的位置。为了比较方便,本文就引用文[2]中由Δt所定激波位置的表格来定某一Δt层上的激波位置。有了激波位置,初值就也定了。

(二) 采用所谓镜面反射法.仍从T=0.0始算,给原点赋予原来第三节点的值,则原点前再添两节点,分别赋予前一节点以原来第二节点值,后一节点赋予原第一节点值(须注意,此时u变号).这样,激波就好象从t轴左边通过 x=0 处,而反射至t轴右边,这样在计算初值时就避开了奇点.

下面,我们来给出次边界格式。为了以后计算的方便,我们不再直接计算(2.1)中的u, p和p,而是计算由

$$\begin{cases} u=m/\rho\\ p=(\gamma-1)(e-0.5\rho u^2) \end{cases}, \qquad W=\begin{pmatrix} \rho\\ m\\ e \end{pmatrix}$$

代换(2.1)得到的等价方程组(2.1)'中的p, m和e.

$$\begin{pmatrix} \rho_{i} \\ m_{i} \\ e_{i} \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ \frac{\gamma - 3}{2} \frac{m^{2}}{\rho^{2}} & (3 - \gamma) \frac{m}{\rho} & \gamma - 1 \\ -\frac{\gamma m e}{\rho^{2}} + (\gamma - 1) \frac{m^{3}}{\rho^{3}} & \frac{\gamma e}{\rho} - \frac{3(\gamma - 1)m^{2}}{2\rho^{2}} & \frac{\gamma m}{\rho} \end{pmatrix} \begin{pmatrix} \rho_{z} \\ m_{z} \\ e_{z} \end{pmatrix} = 0$$
 (2.1)'

(一) 对于次边界,可就选一个一般的三点显式格式:

$$v_{j}^{n+1} = v_{j}^{n} - \lambda \left(\overline{f}_{j+\frac{1}{2}}^{n} - \overline{f}_{j-\frac{1}{2}}^{n} \right)$$

$$\overline{f}_{j+\frac{1}{2}} = \frac{1}{2} \left[f(v_{j}) + f(v_{j+1}) - \frac{1}{\lambda} Q\left(\overline{v}_{j+\frac{1}{2}} \right) \Delta_{j+\frac{1}{2}} v \right]$$

$$\overline{v}_{j+\frac{1}{2}} = \lambda a^{k} \left(v_{j+\frac{1}{2}} \right), \quad \Delta_{j+\frac{1}{2}} v = v_{j+1} - v_{j}$$

$$Q(x) = \begin{cases} \frac{x/4\varepsilon + \varepsilon}{|x|} & \stackrel{\text{w}}{=} |x| < 2\varepsilon \\ |x| & \stackrel{\text{w}}{=} |x| \ge 2\varepsilon \end{cases}$$

值得注意的是,这个三点显格式是一阶的,它同二阶的格式合用必会导致计算结果的不满意,故本文下面提出了一个可和二阶 Harten格式相配使用的,具有局部二阶精度的次边界 差分格式。

(二) 仔细分析Harten 格式知,现关键 是如何构造 $g_1(-1, 1, 2)$.由于-1点的值尚 无定义,故 g_1 的构造是困难的,这就迫使我们 设法将 g_1 对-1点的依赖转移为 g_1 对点1(N+1)的依赖(见图2).

$$a = (\Delta x \cdot L \cdot W_z)|_{z=0} = \Delta x \cdot \left(\frac{\rho_i}{2c}, \rho_z, -\frac{\rho_i}{2c}\right)^T, \qquad c = \frac{\gamma_I}{\rho_i}$$

因此: $v_1^i = -\lambda \cdot c$; $v_1^i = 0$; $v_1^i = \lambda \cdot c$. 从而有:

$$g_{1} = \left(\begin{bmatrix} Q(-\lambda c) - (-\lambda c)^{2} \end{bmatrix} [(\rho_{1}^{n+1} - \rho_{1}^{n})/4c] \lambda \\ 0 \\ - [Q(\lambda c) - (\lambda c)^{2}] [(\rho_{1}^{n+1} - \rho_{1}^{n})/4c] \lambda \end{bmatrix} \right)_{x=0}$$

这样, g_1 就只和x=0处的各物理量有关,从而在次外层上可以适用Harten格式,这实际是对Harten格式进行了技巧性改造,以使Harten格式也能用于次外层,从而提高精度.

最后,对于左边界的处理,同样给出了两种格式。

(一) 首先利用特征关系,给出一个左边界差分格式.设W。的系数阵的三个特征值为: $\lambda_1 = u - c_3, \lambda_2 = u_1, \lambda_3 = u + c_2, \pm c_2, \pm c_3, \pm c_2, \pm c_3, \pm c_4, \pm c_4, \pm c_5, \pm c_5,$

≈ e_{1}^{*+1} . 另外,设 (x_{1}, x_{2}, x_{3}) 是相应于 λ_{2} =u的左特征向量,则: $(x_{1}, x_{2}, x_{3})A(W)$ =u (x_{1}, x_{2}, x_{3}) ,展开上式,并注意到u=0,可得: x_{1} =-2 $\gamma e_{1}, x_{2}$ =0, x_{3} =2 ρ .以此左特征向量左 乘(2,1)',展开并化简得:

 $\rho_{1}^{n+1} = \rho_{1}^{n} + \rho_{1}^{n} \cdot [(e_{1}^{n+1} - e_{1}^{n})/\gamma e_{1}^{n}]$

这样,就得到一组左边界的求解差分格式:

 $m_{i}^{n+1}=0, \qquad e_{i}^{n+1}=e_{i}^{n}, \qquad \rho_{i}^{n+1}=\rho_{i}^{n}+\rho_{i}^{n}[(e_{i}^{n+1}-e_{i}^{n})/\gamma e_{i}^{n}]$

对于上式,由其推导知它的收敛阶为O(h+r)。故尽管Harten格式是二阶的,但当n足够大时,边界点的微小误差必然影响到内点的计算精度。因此,我们在下面利用泰勒展开重新构造一个左边界差分格式,以使其局部收敛阶达二阶。

(二) 将eⁿ₁⁺¹在eⁿ₂处泰勒展开,由条件 u=0,利用待定系数法,并注意到 m₀=0,可推得:

$$e_{1}^{n+1} = e_{1}^{n} + \frac{\lambda}{2} \frac{\gamma e_{1}^{n}}{\rho_{1}^{n}} (m_{3}^{n} - 4m_{2}^{n}) + \frac{\lambda^{2}}{2} \frac{\gamma e_{1}^{n}}{\rho_{1}^{n}} (\gamma - 1) \left(e_{1}^{n} - 2e_{2}^{n} + e_{3}^{n} + \frac{(m_{2}^{n})^{2}}{\rho_{1}^{n}} \right) \\ + O(\Delta t^{3} + \Delta x^{2})$$

再据熵守恒方程:

 $\frac{\partial s}{\partial t} + u \cdot \frac{\partial s}{\partial x} = 0$

知道,在固壁上有: $\frac{\partial s}{\partial t}\Big|_{s=0} = 0$

又对常比热完全气体有: $\frac{\partial}{\partial t} \left(\frac{p}{\rho^{r}} \right) \Big|_{r=0} = 0$

从而推得: $\rho_1^{n+1} = [e_1^{n+1}/e_1^n]^{1/2} \cdot \rho_1^n$ 这样就推得一个新的左边界格式:

$$\begin{pmatrix}
m_1^{n+1} = 0 \\
e_1^{n+1} = e_1^n + \frac{\lambda}{2} \frac{\gamma e_1^n}{\rho_1^n} (m_3^4 - 4m_2^4) + \frac{\lambda^2}{2} \frac{\gamma e_1^n}{\rho_1^n} (\gamma - 1) \left(e_1^n - 2e_2^n + e_3^n + \frac{(m_2^n)^2}{\rho_1^n} \right) \\
\rho_1^{n+1} = (e_1^{n+1} / e_1^n)^{1/\gamma} \rho_1^n$$

从其推导过程易知,上式是二阶收敛的.

四、数值结果及分析

(1) 将一阶的边界及次边界差分格式和Harten格式配套,构成第一套方案. 二阶的 边界和次边界差分格式同Harten格式配套,构成第二套方案. 我们对两套方案进行了大量 计算,并将结果和文[3]相应时间的激波位置、速度、密度、压力等结果进行了比较. 从中 知,本文值与文[3]相比误差较小,通常在0.2090%和1.109%间. 另外,从总的来看,第一 套方案相对第二套方案,激波位置等的误差较大,这和理论分析吻合.图5给出了t=1.542× 10⁻⁶s时的密度图象,经过分析知,两套方案在激波处没多少差别,结果同文[3]比是完全令 人满意的.

(2) 表1给出了t=1.00×10⁻⁵s时的解析 解、文[3]和本文的两套方案数值结果对照表。 从表1知,Harten格式算出的*p*_M,ρ_M均比文 [3]算出的结果好.只是u_M不如文[3]的解精确, 但在加密网点计算后,同样能使 u_M比文[3]的 结果来得好.另外,易知本文的第二套方案比 第一套方案更接近分析解.同时,本文对其它t <1.05×10⁻⁵s时间内的各个结果作了相 同 的 比较,有颇为满意的类似结果。

表1

 $T = 1.00 \times 10^{-5}(s), T_0 = 0.20 \times 10^{-5}(s)$

类	别	激波位置	<i>u_M</i> (m/s)	ρ _M (kg/m ³)	р _М ×10 ⁻⁶ (N/m ²)
文[3]的数	收值解	0.021598	1606.0	2.3758	14.817
本文第二者	数值解	0.021858	1599.5	2.4307	14.863
本文第一手	数值解	0.021337	1596.3	2.4301	14.841
本文的解t	斤解	0.021598	1606.8	2.5253	14.875

(3)为了提高计算结果的精确度,可采用镜面反射法来避免从 $T_0=0.08$ 始算时出现的 奇点.表2给出了在 $T=0.197 \times 10^{-5}$ s时,由初值 $T_0=0.08$ 始算时,镜面反射和第一套方案的 计算结果.文[4]曾提及镜面反射法在固壁处解会产生抖动,并使p, $u \approx n\rho$ 的峰值抹平一些. 表2给出了具体数据,并推算了峰值被抹平了多少.同时,我们将一系列相同时间的数 据比 较发现,随着时间推移,这种抖动和抹平现象会逐步消失.表3给出了第一套方案($T_0=0.08$) 和用镜面反射法算得的,在时间 $T=0.60 \times 10^{-5}$ s和 $T=0.197 \times 10^{-5}$ s时激波位置及激波处的 p,u, ρ 和 p_0 的对照表.从表3知,镜面反射和第一套方案比较,激波位置偏差较大.但随着 时间推移,这种偏差缩小,在达到爆炸点附近时,两者激波位置趋于重合.在表3中, $T=0.60 \times 10^{-5}$ s时,激波偏差一个节点,而 $T=0.197 \times 10^{-5}$ s时,激波偏差2个节点.

(4) 为了保证Harten格式的稳定性, 文[1]指出了时间步长必须满足一定条件:

$$\sigma = \max(|\boldsymbol{u}| + c) \frac{\Delta t}{\Delta x}$$

其中|σ]≪1.为了提高精度,可以增加网点,使Δx减小,这样Δt也减小,这时要达到一定的T,所费时间是以2的幂次增加的。表4给出了T=0.30×10⁻⁵s时,两种空间步长对照表。

522

妻2

 $T = 0.197 \times 10^{-5}(s), T_0 = 0.0(s), \Delta x = 4.9618 \times 10^{-4}(m)$

变量	类 别	J=1	J=2	J=3	J=4	J=5	J=6	J=7	J=8	J=9
<i>ры</i> (kg/m ³)	镜面反射 第 一套方案 固壁处差值	18.181 24.431 6.2500	18.067 23.723 5.656	17.795 20.413 2.618	17.337 16.682 0.655	16.362 9.2859 7.0761	14.266 4.6881 9.5779	7.8737 4.3574 3.5163	4.3427 4.2323 0.1104	4.1120 4.1120 0.0000
ры×10 ^{-е} (N/m²)	镜面反射 第一套方案 國 壘火差值	50.936 58.594 7.65 8 0	50.966 58.430 7.46 40	51.112 55.401 4.289	51.316 48.695 2.621	50.287 24.174 26.113	44.323 7.5034 36.8196	7.0418 6.9194 0.1224	7.0557 6.8160 0.2397	6.7165 6.7164 0. 0001
<i>u_M</i> (m/s)	镜 面反射 第一 套方 案 固璧处差值	0 - 0000 0 - 0000 0 - 0000	75.156 186.78 111.62	157.36 272.44 115.08	244.76 190.85 53.91	286.62 -724.91 1011.53	176.32 -2129.3 2305.62	-869.86 -2184.7 1323.84	-2130.5 -2168.7 38.200	- 2152.9 - 2152.9 0.0000

_		
-		÷
-		

 $T_0 = 0.0(s), \Delta x = 4.9618 \times 10^{-4}(m)$

t×10 ⁻⁵ (s)	类 别	激波位置(m)	$u_M(m/s)$	ρ _M (kg/m ³)	рм×10 ^{~6} (N/m ²)	p ₀ ×10 ⁻⁶ (N/m ²)
0.60	第一套解	0.01042 0	975.15	5.8887	25.220	24.507
	镜面反射解	0.010916	980.11	5.1233	25.067	24.424
0.197	第 一套解	0.0019847	272.44	20.413	55.401	58.596
	镜面反射解	0.0029771	286.62	16.362	50.287	51.112

 $f \propto 10^{5}(s)$

▶ 圖畫上压力分布 (第二种解法)

从春4知,加密网点显然提高了精度,但要达到同一时间 $T = 0.30 \times 10^{-5}$ s的话,131个节点只 需15层即可, 而节点为200时, 要算至20层, 时间大大增加了.

表4		$T_0 = 0.20 \times 10^{-5}(s), T = 0.30 \times 10^{-5}(s)$						
第n节点数	网格层数	激波位置(m)	uu(m/s)	$ ho_M(kg/m^3)$	рм×10 ⁻⁶ (N/m ²)			
131	15	0.0049618	470.38	11.265	40.159			
200	20	0.0042250	446.46	11.766	39.516			
文[2]的	1分析解	0.0041000						

以上说明 Harten 格式在处理激波位置和激波附近的数值解方面比以往其它算 法 更 成 功,数据比较准确, 是处理激波间断问题的有效工具, 值得推广.图5至图9给出了部分图象 以便与文[3]中图象进行比较.

最后,作者衷心感谢吴雄华博士在本文的理论推导和解题分析方面的悉心指导,也衷心 感谢李世雄教授的热情指导和帮助。

参考文献

[1] Harten, A., High Resolution Schemes for Hyperbolic Conservation, Laus (1983).

[2] 黄敦, 气体力学方程组的一套高精度分析解, 计算数学年会论文 (1979).

[3] 吴雄华, 分离奇性法在不定常激波计算中的应用, 数值计算与计算机应用, 3(3) (1982).

[4] 周宁,一个二阶单调迎风格式及对不定常激波反射的计算,计算物理,1(1)(1984),21-30。

Harten Solution for One-Dimensional Unsteady Equation

Chen Shao-jun

(Shanghai University of Technology, Shanghai)

Abstract

In order to use the second-order 5-point difference scheme mentioned to compute the solution of one dimension unsteady equations of the direct reflection of the strong plane detonation wave meeting a solid wall barrier, in this paper, we technically construct the difference schemes of the boundary and sub-boundary of the problem, and deduce the auto-analogue analytic solutions of the initial value problem, and at the same time, we present a method for the singular property of the initial value problem, from which we can get a satisfactory computation result of this difficult problem.

The difference schemes used in this paper to deal with the discontinuity problems of the shock wave are valuable and worth generalization.

Key words one-dimensional unsteady, Harten solution, difference scheme