复合材料层合板的三维非线性分析

江晓禹1,2 张相周2 陈百屏|2

(1994年7月12日收到, 1996年3月12日收到修改稿)

摘要

本文提出了一种研究复合材料层合板壳三维问题的解析方法。该方法采用摄动方法和变分 原 理来满足三维弹性理论基本微分方程及限制条件,分析了受横向载荷作用的复合材料各向异 性 单 层圆板及层合圆板的三维非线性问题。得到了高精确度的摄动级数解答。大量结果表明横向 剪 应 力和横向正应力在层合板的三维非线性分析中是很重要的。

关键调 三维问题 摄动方法 变分原理 层合板壳 非线性

一、引 言

由于复合材料在现代工程技术中的大量应用以及复合材料力学的高度发展,要求我们采 用三维弹性理论以获得复合材料层合板的力学特性的高精确度预测。因为对于复合材料层合 板,在各种情况下,如损伤、疲劳等,由于层间破坏导致层合板的承载能力明显下降,致使 材料的潜力未能充分发挥。层间应力往往过大,也是导致层合板因损伤而破坏的一个重要因 素。对于复合材料层合板的非线性分析,已有许多文献作了报道,在Berger方法的基础上, 考虑了横向剪切变形和转动惯性的影响^[1~5],以及一种把冯·卡门平板理论引伸到包括横向 剪力、转动惯性和材料各向异性对层合板几何非线性性能的影响问题,提出了较精确的理 论^[*~7]。但复合材料层合板的三维分析特别是三维非线性分析却很少。Noor^[8],Pagano^[9] 等对层合板的自由振动、弯曲等问题进行了三维研究,仅分析了线弹性情况下层间应力的影 响。本文提出了受均布横向载荷作用的固支复合材料层合圆板的三维非线性解析解答,该层 合板由多层完好粘合的不同铺向的正交各向异性单层板及层合板的三维非线性理论结果及大量的 数值曲线结果,以表明在不同的层合板厚跨比情况下横向剪应力及横向正应力在层合板分析 中的重要性。

二、一般正交各向异性板的三维非线性分析

我们将分析一块受均布横向载荷作用下的的正交各向异性固支圆板,圆板的纤维铺向及

¹ 西南交通大学,成都 610031。 2 西北工业大学,西安 710072。

坐标系如图 1 所示。由于材料的各向异性,弹性模量在1方向为 E_1 ,2方向为 E_2 , z方向为 E_3 , 泊松比分别为 ν_{12} , ν_{23} , ν_{31} , u, v, w分析表示板在x, y, z方向的位移。

图1 圆板的坐标系及位移、应力主向(非线性情况)

考虑这样一种几何非线性,即: 板的微小单元的线应变e;,和转动角的平方ω;与 1相比小 到可略去,但是转动角的平方与线应变同量级,并且虎克定律适用.也就是说,板具有中等 大挠度的变形.

根据拉格朗日的弹性体有限变形描述(见[10]),而且,由于在板的大多数工程应用中, 板的厚度/跨度比 e 是很小的,因此,板在其自身平面内的尺寸就要比横向尺寸大得 多,当 弯曲不是很大时,板不允许自己的微体作绕 z 轴的,同切应变比起来很大的相对转动。故绕 z轴的转动可略去, ω_z=0,

基于摄动方法,我们引用如下的无量纲参数:

$$\varepsilon = \frac{h}{a}, \quad X = \frac{x}{a}, \quad Y = \frac{y}{a}, \quad Z = \frac{z}{h}$$

$$U = \frac{u}{h}, \quad V = \frac{v}{h}, \quad W = \frac{w}{h}, \quad P = \frac{q_0 a^4}{\overline{C}_{32} h^4}$$
(2.1)

式中 a和 h 分别为板的半径及半厚度。取 ε 为摄动小参数,将(2,1)式代入三维非线性基本 方程,可得如下的无量纲应变-位移关系,平衡微分方程,而应力-应变关系不变。

无量纲应变-位移关系为:

$$\begin{cases} \varepsilon_{\mathbf{x}} = \varepsilon U, \mathbf{x} + \frac{1}{2} \omega_{\mathbf{x}}^{2} \\ \varepsilon_{\mathbf{y}} = \varepsilon V, \mathbf{y} + \frac{1}{2} \omega_{\mathbf{x}}^{2} \\ \varepsilon_{\mathbf{z}} = W, \mathbf{z} + \frac{1}{2} (\omega_{\mathbf{x}}^{2} + \omega_{\mathbf{y}}^{2}) \\ \varepsilon_{\mathbf{z}\mathbf{z}} = \varepsilon W, \mathbf{z} + V, \mathbf{z} \\ \varepsilon_{\mathbf{z}\mathbf{x}} = \varepsilon W, \mathbf{x} + V, \mathbf{z} \\ \varepsilon_{\mathbf{z}\mathbf{x}} = \varepsilon W, \mathbf{x} + U, \mathbf{z} \\ \varepsilon_{\mathbf{x}\mathbf{y}} = \varepsilon (U, \mathbf{y} + V, \mathbf{x}) - \omega_{\mathbf{x}} \omega_{\mathbf{y}} \\ \omega_{\mathbf{x}} = \frac{1}{2} (\varepsilon W, \mathbf{y} - V, \mathbf{z}) \end{cases}$$

式中

$$\omega_{\mathbf{x}} = \frac{1}{2} (U, \mathbf{z} - \varepsilon W, \mathbf{x})$$

无量纲平衡微分方程为:

 $\varepsilon(\sigma_{\mathbf{x}} + \omega_{\mathbf{y}}\tau_{\mathbf{x}\mathbf{z}}), \mathbf{x} + \varepsilon(\tau_{\mathbf{x}\mathbf{y}} + \omega_{\mathbf{y}}\tau_{\mathbf{y}\mathbf{z}}), \mathbf{y} + (\tau_{\mathbf{x}\mathbf{z}} + \omega_{\mathbf{y}}\sigma_{\mathbf{z}}), \mathbf{z} = 0$

(2,2)

$$\varepsilon(\tau_{\mathbf{X}\mathbf{Y}} - \omega_{\mathbf{X}}\tau_{\mathbf{X}\mathbf{Z}}), \mathbf{x} + \varepsilon(\sigma_{\mathbf{Y}} - \omega_{\mathbf{X}}\tau_{\mathbf{Y}\mathbf{Z}}), \mathbf{y} + (\tau_{\mathbf{Y}\mathbf{Z}} - \omega_{\mathbf{X}}\sigma_{\mathbf{Z}}), \mathbf{z} = 0$$
(2.3b)

$$\varepsilon(\tau_{\mathbf{X}\mathbf{Z}}-\omega_{\mathbf{Y}}\sigma_{\mathbf{X}}+\omega_{\mathbf{X}}\tau_{\mathbf{X}\mathbf{Y}}), \mathbf{x}+\varepsilon(\tau_{\mathbf{Y}\mathbf{Z}}-\omega_{\mathbf{Y}}\tau_{\mathbf{X}\mathbf{Y}}+\omega_{\mathbf{X}}\sigma_{\mathbf{Y}}), \mathbf{y}$$

$$+(\sigma_{\mathbf{z}}-\omega_{\mathbf{y}}\tau_{\mathbf{x}\mathbf{z}}+\omega_{\mathbf{x}}\tau_{\mathbf{y}\mathbf{z}}),\mathbf{z}=0$$
(2.3c)

同时,无量纲边界条件为:

$$U = V = W = W, \xi = 0 \qquad (EZ = 0, \xi^{2} = X^{2} + Y^{2} = 1)$$

$$\sigma_{z} = -P\overline{C}_{33}\varepsilon^{4}, \ \tau_{xz} = \tau_{yz} = 0 \qquad (EZ = -1)$$

$$\sigma_{z} = \tau_{xz} = \tau_{yz} = 0, \qquad (EZ = 1)$$

$$(2.4)$$

然后, 把U, V, W展开为摄动参数 ε 的摄动级数, 以求解该三维问题⁽¹¹⁾

$$U = \sum_{n=0}^{\infty} U_n \varepsilon^n \quad V = \sum_{n=0}^{\infty} V_n \varepsilon^n \quad W = \sum_{n=0}^{\infty} W_n \varepsilon^n \tag{2.5}$$

本文摄动方法的基本思想是以所解问题的二维解答作为相应三维解答的一个基本解的形式,在该基本解的基础上利用摄动方法以求得该三维问题的其余摄动解。则有基本解^[12]。

$$U_0 = V_0 = 0$$
 $W_0 = C_0 (1 - X^2 - Y^2)^2$ (2.6)
式中 C_0 为未知数,代表板中心的无量纲挠度,将式(2.5)、(2.6)代入平衡微分方程(2.3),

并使ε的同阶量系数相等,我们可得到一系列可逐级求解的偏微分方程及边界条件,各级边界条件为:

 ε^{n} :

$$U_{n} = V_{n} = W_{n} = W_{n,\xi} = 0 \quad (\Xi Z = 0, \xi^{2} = X^{2} + Y^{2} = 1 \pounds, n = 0, 1, 2, 3)$$

$$\sigma_{Zn} = \tau_{XZn} = \tau_{YZn} = 0 \quad (\Xi Z = \pm 1 \pounds, n \neq 4, n = 0, 1, 2, 3, 5 \cdots)$$

$$\sigma_{Z4} = -\overline{C}_{30} P \varepsilon^{4}, \quad \tau_{XZ4} = \tau_{YZ4} = 0 \quad (\Xi Z = -1 \pounds) \quad (2.7)$$

$$\sigma_{Z4} = \tau_{XZ4} = \tau_{YZ4} = 0 \quad (\Xi Z = 1 \pounds)$$

则从平衡微分方程(2.3)的各级,可求得各级满足边界条件(2.7)的解答。 ε^o级:方程(2.3)自动满足

$$\left. \begin{array}{c} U_{1} = 4C_{0}(1 - X^{2} - Y^{2})XZ \\ V_{1} = 4C_{0}(1 - X^{2} - Y^{2})YZ \\ W_{1} = 0 \end{array} \right\}$$

$$(2.8)$$

$$\mathfrak{s}^{2}\mathfrak{B}: \qquad U_{2} = V_{2} = 0 W_{2} = -2C_{0}Z^{2} \{\overline{C}_{13}(1-3X^{2}-Y^{2}) + \overline{C}_{23}(1-X^{2}-3Y^{2}) - \overline{C}_{36} \cdot 4XY\} / \overline{C}_{33} -8C_{0}^{2}(1-X^{2}-Y^{2})^{2}Z \{\overline{C}_{13}X^{2} + \overline{C}_{23}Y^{2} + \overline{C}_{33}(X^{2}+Y^{2}) + \overline{C}_{26} \cdot 2XY\} / C_{33}$$

(2, 9)

ε³级:由于几何非线性对平衡微分方程及边界条件的影响,要同时满足平衡 微分方程及板的 上、下表面应力边界条件是很困难的,所以此处我们引入变分原理来进行求 解。对 所 求 解 答,取其满足上、下表面的应力边界条件、位移边界条件,用变分原理来近似的满足平衡微 分方程如下:

$$\iiint_{\mathcal{Q}} \left[\sum_{i=0}^{n} P_{i} \cdot \sum_{j=0}^{n} \delta U_{j} + \sum_{i=0}^{n} Q_{i} \cdot \sum_{j=0}^{n} \delta V_{j} + \sum_{i=0}^{n} R_{i} \cdot \sum_{j=0}^{n} \delta W_{j} \right] d\mathcal{Q} = 0$$
(2.10)

式(2.10)中, *P*, *Q*, *R*,分别表示平衡微分方程(2.3a)、(2.3b)、(2.3c)的左边第ε⁴级。 对无量纲板中心挠度C₀求变分,且

$$\sum_{j=0}^{n} \delta U_{j} = \varepsilon \cdot \delta U_{1} + \varepsilon^{3} \cdot \delta U_{3} + \varepsilon^{6} \cdot \delta U_{8} + \cdots$$

$$\sum_{j=0}^{n} \delta V_{j} = \varepsilon \cdot \delta V_{1} + \varepsilon^{3} \cdot \delta V_{3} + \varepsilon^{6} \cdot \delta V_{8} + \cdots$$

$$\sum_{j=0}^{n} \delta W_{j} = \delta W_{0} + \varepsilon^{2} \cdot \delta W_{2} + \varepsilon^{4} \cdot \delta W_{4} + \varepsilon^{6} \cdot \delta W_{8}$$
(2.11)

将(2.11)式代入(2.10)式,当仅保留至e⁸级微量时,有:

$$U_{3} = \frac{4}{3}C_{0}Z^{3}(A_{35}X + A_{58}Y) - 4C_{0}Z(A_{32}X + A_{34}Y) \\ -8C_{0}^{2}Z^{2}(1 - X^{2} - Y^{2})\{3(\overline{C}_{13} + \overline{C}_{33})X^{3} + (\overline{C}_{13} + 2\overline{C}_{23} + 3\overline{C}_{33})XY^{2} \\ +5\overline{C}_{36}X^{2}Y + \overline{C}_{36}Y^{3} - (\overline{C}_{13} + \overline{C}_{33})X - \overline{C}_{36}Y\}/\overline{C}_{33} \\ V_{3} = \frac{4}{3}C_{0}Z^{3}(B_{35}X + B_{36}Y) - 4C_{0}Z(B_{33}X + B_{34}Y) \\ -8C_{0}^{2}Z^{2}(1 - X^{2} - Y^{2})\{3(\overline{C}_{23} + \overline{C}_{33})Y^{3} + (2\overline{C}_{13} + \overline{C}_{23} + 3\overline{C}_{33})X^{2}Y \\ +5\overline{C}_{36}XY^{2} + \overline{C}_{36}X^{3} - (\overline{C}_{23} + \overline{C}_{33})Y - \overline{C}_{36}X\}/\overline{C}_{33} \\ W_{3} = 0$$

式中 $A_{31}, A_{32}, A_{33}, A_{34}, A_{35}, A_{36}, B_{31}, B_{32}, B_{33}, B_{24}, B_{25}, B_{36}, C_{17}$ 等为材料参数^[14]. ε^{4} 级: 对于式(2.11),当仅保留 ε^{4} 级微量时,我们可求得 U_{4}, V_{4}, W_{4} 及相应的应力. 如以上各级类似的求解,当对式(2.11)保留至 ε^{5} 级、 ε^{6} 级……我们可求得位移、应力的各级 解答.取碳/环氧复合材料单向板,其材料常数为: $E_{1}=137.9$ GPa, $E_{2}=E_{3}=14.48$ GPa, $G_{12}=G_{23}=G_{31}=5.86$ GPa, $\nu_{12}=\nu_{23}=\nu_{21}=0.21$,而板中心挠度 $C_{0}=1$ 时,求得板的位移U, V,W的前四级摄动解答之和,前六级摄动解之和,列于表1中.

从表1可以看出,对于位移U,V,W的前四级摄动解之和与前六级摄动解之和,在摄动参数ε由小变大的过程中,前四级和与前六级和的误差也由小变大,在ε=0.05时,前四级和与 前六级和几乎是一样的。故所得解答只取前四级摄动解就可以了。随着 ε 的增大,为了获得 误差许可的解答,就要根据要求取至前四级、前六级,甚至更多级的摄动解答。所以,在板 的厚跨比ε≤0.1的情况下,对板的三维非线性分析只取前四级近似解就可以获得很准确的结 果,该四级近似解答为:

$$\begin{array}{c} U = \varepsilon U_1 + \varepsilon^3 U_3 \\ V = \varepsilon V_1 + \varepsilon^3 V_3 \\ W = W_0 + \varepsilon^2 W_2 + \varepsilon^4 W_4 \end{array} \right)$$

$$(2.13)$$

其中 $U_1, U_3, V_1, V_3, W_0, W_2, W_4$ 等见式 (2.6) 至 (2.12)。对于该前四级 近似 解答,在板 变得很薄 ($\epsilon \rightarrow 0$),无量纲板中心挠度 $C_0 = 1$,且材料为各向同性时,可退化为文献[13]中圆 板的大挠度弯曲问题解答。同时,对于本文非线性解答,在板中心无量纲挠度 $C_0 \rightarrow 0$ 时,可 退化为相应的三维线性解答^[14].

表 1

C。==1时板内各点的无量纲的位移

	W, c=0.1					
点 (X,Y,Z)	前四级和	前六级和	误差*(%)	前四级和	前六级和	误差(%)
(0,0,1)	0.990926	0.990921	0.0005	0.993352	0.993017	0.033
(0.2, 0.2, 1)	0.834868	0.834876	0.0009	0.813274	0.813776	0. 061
(0.4, 0.4, -1)	0.466943	0.466955	0.0026	0.508460	0.509225	0.151
(0.5, 0.5, -1)	0.257310	0.257327	0.056	0.302380	0.303300	0.305
(0.3,-0.7,0.5)	0.174653	0.174687	0.002	0.172540	0.172250	0.167
(0.2, 0.6, 1)	0.351519	0.351533	0.004	0.336139	0.337076	0.279
(0.4, 0.6, -1)	0.235659	0.235666	0.003	0.278578	0.279010	0.155
(0.6, 0.8, -1)	0.008850	0.008743	0.091	0.031693	0.031181	1.613
(0.8, 0.8, -1)	0.083142	0.083199	0.069	0.077288	0.077988	0.897
(0,1,1)	0.004721	0.004721	0.000	0.044905	0.046247	2.980
(0,0.8,1)	0.125950	0.125970	0.016	0.126464	0.127719	0.993
(0.0.6.1)	0.400090	0.400010	0.002	0.379500	0.380123	0.162
(0,0.4,1)	0.694291	0.694294	0.001	0.670138	0.670344	0.031
(0,0.2.1)	0.910769	0.910770	0.000	0.891179	0.891291	0.012
(0, -0.2, 1)	0.910769	0.910770	0.000	0.891179	0.891291	0.012
(-0.2, 0.8, 1)	0.105540	0.105534	0.005	0.144762	0.144372	0.269
(-0.2, -0.6, -1)	0.361787	0.361782	0.001	0.401227	0.400929	0.074
(-0,2,-0,4,-1)	0.638823	0.638821	0.000	0.667630	0.667505	0.018
(-0.2, -0.2, -1)	0.842086	0.842089	0.000	0.858734	0.858889	0.018
(-0.2,0,-1)	0.915959	0.915963	0.001	0.927466	0.927752	0.031
(-0.4, -0.6, -0.5)	0.041516	0.041531	0.038	0.050225	0.051228	1.990
(-0.4, -0.6, -1)	0.235659	0.235665	0.003	0.278578	0.279010	0.155
(-0.4, -0.4, -1)	0.466940	0.466950	0.002	0.508457	0.509225	0.150
(-0.4, -0.2, -1)	0.643233	0.643250	0.003	0.679150	0.680284	0.167
(-0.4, 0, -1)	0.708198	0.708213	0.003	0.741250	0.742601	0.176
	V, e=0.1					
(0.2,0.2,1)	0.921864	0.954101	3.493	0.072257	-0.72959	0.971
(0.4, 0.4, -1)	1.092760	1.141936	4.500	-0.076917	-0.076495	0.549
(0.5, 0.5, -1)	0.829570	0.888548	7.100	-0.057880	-0.058639	1.305
(9.4, -0.6, -1)	0.857391	0.885025	3.223	-0.063999	-0.650490	1.641
(0 0.4.1)	0.720121	0.733310	1.832	0.136921	0.137968	0.765
(0.0.2.1)	1.006363	1.013560	0.715	0.074271	0.075141	1.170
(0, -0.2, 1)	1.006363	1.013560	0.715	-0.074271	-0.075141	1.170
(-0.2, -0.6, -1)	1.070190	1.051121	1.781	0.092374	0.092453	0.085
(-0.2, -0.4, -1)	1.267919	1.259867	0.634	0.099587	0.098638	0.950
(-0.2, -0.2, -1)	1.369174	1.379063	0.722	0.062807	0.062062	0.180
(-0.2, 0, -1)	1.399923	1.418256	1.300	0.000000	0.000000	0.000
(-0.4, -0.6, -1)	0.857391	0.885025	3.223	0.063999	0.065049	1.600
(-0.4, -0.4, -1)	1.092761	1.141936	4.500	0.076917	0.076495	0.550
(-0.4, -0.2, -1)	1.215900	1.268800	4.350	0.050346	0.049807	1.070

续表

	V, e=0.05					
: (0.2,0.2,1)	0.032585	0.032565	0.061	0.036632	0.036654	0.060
(0.4, 0.4, -1)	-0.041373	-0.041462	0.198	-0.050415	-0.050401	0.026
(0.5.0.51)	-0.033630	-0.033769	0.408	-0.044735	-0.044761	0.052
(0.3,-0.7,0.5)	0.009687	0.009661	0.269	-0.032783	-0.032769	0.041
(0.2.0.6.1)	0.020412	0.020359	0.259	0.073902	0.073892	0.013
(0.4, 0.6, -1)	-0.025200	-0.025381	0.462	-0.051199	-0.051232	0.064
(0.8.0.8, -0.5)	0.027725	0.027626	0.361	0.016010	0.015942	0.370
(0,0.8,1)	0.000000	0.000000	0.000	0.059763	0.059682	0.135
(-0.2.0.81)	0.006441	0.006515	1.156	-0.043315	-0.043411	0.220
(-0.2, -0.6, -1)	0.017368	0.017420	0.294	0.065546	0.065549	0.004
(-0.2, -0.4, -1)	0.025643	0.025680	0.147	0.060440	0.065549	0.049
(-0.2, -0.2, -1)	0.030795	0.030827	0.104	0.035450	0.035427	0.065
(-0.4, -0.6, -1)	0.025265	0.025381	0.460	0.051199	0.051233	0.064
(-0.4, -0.4, -1)	0.041379	0.041461	0.198	0.050415	0.050401	0.026
(-0.4, -0.2, -1)	0.051423	0.051488	0.125	0.030293	0.030276	0.055
(-0.4.0,-1)	0.054834	0.054893	0.100	0.000000	0.000000	0.000

* 误差=(前四级和-前六级和)/前四级和

三、层合板的三维非线性分析

我们研究受均布横向载荷 q_0 作用的一块固支边界层合复合材料圆板,板的构造及坐标系 如图 2 所示。第 k 层的沿纤维方向的弹性模量为 $E_{1(k)}$,层内垂直于纤维方向的弹性模量为 $E_{2(k)}$,厚度方向的为 $E_{3(k)}$ 。泊松比分别为 $v_{12(k)}$, $v_{23(k)}$, $v_{31(k)}$,剪切模量分别为 $G_{12(k)}$, $G_{23(k)}$, $G_{31(k)}$,纤维铺设角为 $\theta_{(k)}$ 。总层数为N,每层厚为2h/N,层合板厚度为2h。

层合板的求解过程分两步,第一步:求出各个单层的满足平衡微分方程(2.3a)、(2.3b)、 (2.3c),但不考虑边界条件的解。第二步:对第一步求得的解,再去满足层合板的边界条件 及各层之间的连接条件。通过以上两步的求解,我们即可获得层合板的满足平衡微分方程及 边界条件和层间连接条件的解答。

 正交各向异性单层(第k层)的满足平衡微分方程(2.3a)、(2.3b)、(2.3c)的解 引用式(2.1)的无量纲参数,则根据一般正交各向异性板的非线性分析,我们可求出第k 个单层的前四级摄动级数解答如下:

图2 复合材料层合板的构造及坐标系

其中 $H_{(k)}(X,Y), K_{X(k)}(X,Y), K_{Y(k)}(X,Y), I_{X(k)}(X,Y), I_{Y(k)}(X,Y)$ 为X,Y的待定 函数, $\overline{C}_{ij(k)}, A_{ij(k)}, B_{ij(k)}$ 等为由第k层材料常数及纤维铺设角所获得的材料参数^[14].

2. 层合板的满足边界条件及层间连接条件的解

层合板的边界条件同(2.7)式, 层间连接条件为: 在 $Z = 1 - \frac{2k}{N}$ 时 $\sigma_{Z(k)} = \sigma_{Z(k+1)}$ $\tau_{XZ(k)} = \tau_{XZ(k+1)}$ $\tau_{YZ(k)} = \tau_{YZ(k+1)}$ $U_{(k)} = U_{(k+1)}$ $V_{(k)} = V_{(k+1)}$ $W_{(k)} = W_{(k+1)}$ (3.3)

在三层碳/环氧复合材料(45°/0°/45°)铺设层合板情况,并且各层的材料常数有: E=137.9GPa, $E_2=E_3=14$. 48GPa, $G_{12}=G_{23}=G_{31}=5.86$ GPa, $\nu_{12}=\nu_{23}=\nu_{31}=0.21$, 我们可求得层合板的解答.

$$C_{0(1)} = C_{0(2)} = C_{0(3)} = C_{0}$$

复合材料层合板的三维非线性分析

图11 典型的应力 σ_z 的分布(X=Y=0.3, e=0.05)

0.44698C3+2.60741C₀=q₀e⁻⁴·10⁻¹² (3.4) 对于以上三层碳/环氧复合材料层合板,当板中心无量纲挠度C₀→0时,有C₀=0.383522 ×10⁻¹²q₀a⁴/h⁴.该解答与相应的线性解答一致^[14].

在 9 层 $(30^{\circ}/90^{\circ}/60^{\circ}/45^{\circ}/\frac{1}{2}0^{\circ})_{8}$ 铺设碳/环氧复合材料层合板时,单层材料常数同三层 板的情况,我们求得层合板中的位移及应力分布如图 3 至 11 所示。在 $C_{0}=0.01$ 时,有 $C_{0}=0.383505 \times 10^{-12}q_{0}e^{-4}$.在 $C_{0}=0.5$ 时, $C_{0}=0.367752 \times 10^{-12}q_{0}e^{-4}$.在 $C_{0}=0.01$ 时, $C_{0}=0.383505 \times 10^{-12}q_{0}e^{-4}$.由此可见,对于板中心挠度,在 $C_{0}=1$ 时,非线性解答为相应线性解 答的85.36%。在 $C_{0}=0.5$ 时,非线性解答为相应线性解答的95.89%。在 $C_{0}=0.01$ 时,非线 性解答为相应线性解答的99.999%。可见,在 $C_{0}=0.01$ 时,非线性解答与相应的线性解答一样.

从图3至图11所示的位移及应力可见

(1) 对于位移W,在板的上、下两表面取最小值,在板的中面上取最大值。位移U、V 在ε=0.05时,在Z向近似为线性变化。在ε=0.1时,在Z向的变化为曲线。由此可见。克希 霍夫假设中的位移U,V在Z向为线性变化,在ε很小时,是很准确的。

(2) 板的面内应力 $\sigma_x, \sigma_x, \tau_x$ 的最大值发生在靠近板的上下表面处,而横向剪应力的最大值发生在板的中面处,横向正应力的最大值在靠近上表面处。同时,随 ε 的变小,应力 $\sigma_x(\sigma_y, \tau_{xx}), \tau_{xz}(\tau_{yz}), \sigma_z$ 之间的差别变大。

(3) 从层合板的各层纤维铺设角及应力σx,σr,τxr在Z向的分布图可见,两相邻层的纤 维铺设角有较大的变化时(本文为 60°),则该相邻两层的应力 σx, σr, τxr 就有较大的差 别.

(4) 对于不同的非线性,即无量纲板中心挠度C₀取不同值的情况下,从各个应力可见. 非线性的影响是比较大的.C₀越大,则所反应的非线性就越大,C₀越小,则非线性就越小, C₀=0.01所描绘的曲线就近似为线性情况.

四、小 结

本文提供了一般正交各向异性单向板及完好粘合的复合材料层合固支圆板受均布横向载 荷作用下的三维非线性解析解答。该三维非线性解答在板中心挠度C₀→0 时,可退化为相应 的三维线性解答。板中的位移和应力都展开为厚跨比 ε 的摄动级数,利用摄动法和变分法求 得满足应力、位移边界条件和非线性平衡微分方程的解答。

对于受均布横向载荷作用下的各向异性层合板,我们给出了满足三维非线性乎衡微分方程、边界条件和层间连接条件的解析解答。以图示给出了应力、位移的大量数值结果。结果表明,随着板的逐渐变薄,即 e 变小,横向正应力(σz),横向剪应力(τxz,τrz); 面内应力(σx,σr,τxr)之间的差别逐渐变大,同时,横向剪应力与面内应力相比,它们所占的比重变小. 但横向剪应力要比横向正应力大得多。而且,两相邻层的纤维铺设角差别越大,则该两层的面内应力就相差越大,同时,对不同的几何非线性作了比较,从应力可见,非线性的影响是比较大的,

参考文献

- [1] C. I. Wu and J. R. Vinson, Influence of large amplitude transverse shear deformation and rotatory inertia on lateral vibrations of transversely iostropic plates, ASME J. Appl. Mech., 36 (1969), 254-260.
- [2] C. I. Wu and J. R. Vinson, On the nonlinear oscillations of plates composed of composite materials, J. Composite Materials, 3 (1969), 548-561.
- [3] C.I. Wu and J.R. Vinson, Nonlinear oscillations of laminated specially orthotropic plates with clamped and simply supported edges, J. Acoust. Soc. Am. 49 (1971), 1561-1567.
- [4] M. Sathyamoorthy, Shear and rotatory inertia effects on large amplitude vibration of skew plates, J. Sound Vib., 52 (1977), 155-163.
- [5] M. Sathyamoorthy, Vibration of plates considering shear and rotatory inertia, AIAA J., 16 (1978), 285-286.
- [6] M. Sathyamoorthy, Shear and rotatory inertia effects on the large amplitude vibration of plates, J. Eng. Mech. Div. Proc. ASCE, 104 (1978), 1288-1293.
- [7] M. Sathyamoorthy, Shear effects on vibration of plates, J. Sound Vib., 60 (1978), 308-311.
- [8] K. N. Ahmed and W.S. Burton, Three-dimensional solutions for antisymmetrically laminated anisotropic plates, ASME J. Appl. Mech., 57 (1990),182-188.
- [9] N. J. Pagano and S. J. Hatifield, Elastic behavior of multilayered bidirectional composites, AIAA J., 10 (1970), 931-933.
- [10] Chuenyuan Chia, Nonlinear Analysis of Plates, McGraw-Hill Inc., New York (1980).
- [11] A. H. Nayfen, Introduction to Perturbation Techniques, Johe Wiley and Sons. (1981).
- [12] C. W. Lee, Three-dimensional solution for simply-supported thick retangular plates, Nuclear Engineering and Design, 6 (1967), 155-162.
- [13] 徐芝伦,《弹性力学》,高等教育出版社,北京(1987).
- [14] 江晓禹. 复合材料层合板壳的三维线性及非线性、静力及动力分析. 西北工业大学博士 学 位论 文 (1992).

Nonlinear Three-Dimensional Analysis of Composite Laminated Plates

Jiang Xiaoyu

(Southwestern Jiaotong University, Chengdu 630031, P. R. China)

Zhang Xiangzhou Chen Baiping

(Northwestern Polytechnical University, Xi'an 710072, P. R. China)

Abstract

In this paper, an analytic method is presented for the research of nonlinear three-dimensional problems of composite laminated plates. The perturbation method and the variational principle are used to satisfy the basic differential equations and the boundary conditions of the three-dimensional theory of elasticity. The nonlinear three-dimensional problems are studied for composite anisotropic circular laminas and laminates subjected to transverse loading. The perturbation series solutions of high accuracy are obtained. A large number of results show that transverse normal stress and transverse shear stresses are very important in the nonlinear three-dimensional analysis of laminated plates.

Key words three-dimensional problems, perturbation method, varinational principle, laminated plate, nonlinearity