含n个圆孔的圆柱体的扭转*

尹昌言

(洛阳工学院, 1986年7月21日收到)

摘要

对此问题本文应用线弹性理论复变函数方法,籍助于解析延展,找到了用级数表示的复扭曲函数、切应力分量、位移分量、抗扭刚度及边界上的切应力.

一、复扭曲函数

含内孔的圆柱体的扭转的研究有重要的意义。文献[1]~[4]研究过含一个圆柱形孔的圆柱体的扭转。本文试图求解含更多个圆柱形孔的圆柱体的扭转问题。

让我们考虑一等截面圆柱体,长为l,半径为 R_0 ,内有n个圆柱形孔,孔的轴线与圆柱体的轴线平行,且在圆柱体内任意位置,孔的半径为 R_* ($k=1,2,\cdots,n$)。作用于圆柱体每一端面上的面力静力相当于一力偶,且此两力偶之矩,大小等于M,而方向相反。在圆柱体和内孔的侧表面没有力的作用,而体积力可忽略不计。

圆柱体的外边界记为 L_0 , n个内孔的边界记为 L_k ($k=1,2,\cdots,n$),每个边界 L_k (k=0, $1,\cdots,n$)所围成的域记为 S_k ($k=0,1,\cdots,n$),所有的边界围成的域记为 S_0 .

这样选择右手坐标系,其坐标原点取在圆柱体左端面中心,轴 x,y 取 在此左端面所在 之平面内,轴 z则沿圆柱体的中心轴线而指向右。

在离端面较远的任意截面上的位移分量和应力分量可写为[5]

$$u = -\delta zy$$
, $v = \delta zx$, $w = \delta \varphi(x, y)$ (1.1)

$$\sigma_{z} = \sigma_{y} = \sigma_{z} = \tau_{zy} = 0$$

$$\tau_{zz} = \mu \delta \left(\frac{\partial \varphi}{\partial x} - y \right)$$

$$\tau_{yz} = \mu \delta \left(\frac{\partial \varphi}{\partial y} + x \right)$$

$$(1.2)$$

其中 δ 是扭转率, μ 为剪切模量, $\varphi(x,y)$ 是待求的扭曲函数。用D表示抗扭刚度,则有

$$M = \delta D \tag{1.3}$$

$$D = \mu \iint_{S} \left(x^{2} + y^{2} + x \frac{\partial \varphi}{\partial y} - y \frac{\partial \varphi}{\partial x} \right) dx dy$$
 (1.4)

现取复变量z=x+iy的解析函数

^{*} 钱伟长推荐。

$$F(z) = \varphi(x,y) + i\psi(x,y) \tag{1.5}$$

则不为零的切应力分量和边界条件可写为

$$\tau_{zz} - i\tau_{zz} = \mu \delta[F'(z) - i\bar{z}] \tag{1.6}$$

$$F(t) - \overline{F(t)} = it\overline{t} + 2ic_k, \qquad \text{a.t.} \quad (k=0,1,\dots,n)$$

其中t为边界 L_k 上的点,F(t)是复扭曲函数F(z)在 L_k 上的边界值, C_k 为常量,且在每个边界上有不同的值,但其中之一可任意选取。今取 $C_0 = -R_0^2/2$ 。

在
$$L_k$$
 ($k=1,2,\cdots,n$)上令

$$F(t) + \overline{F(t)} = 2B_k(t) \tag{188}$$

这里 $B_{k}(t)$ 现是未知的函数,然后取如下的函数^[6]

$$M(z) = F(z) - \sum_{k=1}^{n} \frac{1}{2\pi i} \int_{L_k} \frac{B_k(t)}{t-z} dt - \sum_{k=1}^{n} \frac{i}{2\pi i} \int_{L_k} \left(\frac{1}{2} t \bar{t} + c_k \right) \frac{dt}{t-z}$$
 (1.9)

可以相信,此函数在域S内解析,并可延展到 S_k ($k=1,2,\cdots,n$)内,且在 S_k 内有

$$M(z) = -\sum_{k=1}^{n} \frac{1}{2\pi i} \int_{L_{k}} \frac{B_{k}(t)}{t-z} dt - \sum_{k=1}^{n} \frac{i}{2\pi i} \int_{L_{k}} \left(\frac{1}{2} t \bar{t} + c_{k}\right) \frac{dt}{t-z}$$
(1.10)

这里积分围线 L_k $(k=1,2,\cdots,n)$ 之方向是使域 S 保持在左侧。

(1.9)中的柯西型积分在 L_k $(k=1,2,\cdots,n)$ 内、外解析,且在 L_k 外可写为

$$\frac{1}{2\pi i} \int_{L_k} \frac{B_k(t)}{t-z} dt = \sum_{j=1}^m a_{kj} \left(\frac{R_k}{z-z_{k0}}\right)^j \qquad (k=1,2,\dots,n)$$
 (1.11)

$$\frac{i}{2\pi i} \int_{L_{h}} \left(\frac{1}{2} t \bar{t} + c_{k} \right) \frac{dt}{t - z} = \frac{i R_{k} z_{k0}}{2} {R_{k} \choose z - z_{k0}}$$
 (k=1,2,...,n) (1.12)

作为近似,(1.11)中的级数只取有限项,项数多少的选取,将根据所研究的问题所需满足的近似程度而定。其中的系数 a_{kj} 现在还是未知的, z_{k0} 是圆 L_k 的圆心的复坐标。

当 $|z|>|z_{k_0}|$ ($k=1,2,\dots,n$) 时,上述柯西型积分还可表示为

$$\frac{1}{2\pi i} \int_{L_k} \frac{B_k(t)}{t-z} dt = \sum_{j=1}^m b_{kj} \left(\frac{R_0}{z} \right)^j \qquad (k=1,2,\dots,n)$$
 (1.13)

$$\frac{i}{2\pi i} \int_{L_k} \left(\frac{1}{2} t \tilde{t} + c_k \right) \frac{dt}{t - z} = \frac{i R_k^2}{2} \sum_{i=1}^m \alpha_k^i \left(\frac{R_0}{z} \right)^j \qquad (k = 1, 2, \dots, n)$$
 (1.14)

其中

$$b_{kj} = \sum_{s=1}^{j} C_{j-1}^{s-1} \alpha_{k}^{j-s} \beta_{k}^{s} a_{ks}, \qquad {k \choose j=1, 2, \dots, m \choose j}$$

$$\beta_{k} = \frac{R_{k}}{R_{0}}, \quad \alpha_{k} = \frac{z_{k0}}{R_{0}}, \qquad (k=1, 2, \dots, n)$$
(1.15)

这里及以后,记号 C_i 表示从s个元素中每次取j个元素的组合数。当 j>s 时和当j是一分数或负数时,就令 $C_i=0$ 。又令 $C_i^0=1$ 。

若 $z_{p0}(p=1,2,\cdots,n)$,但 $p \neq k$)是 L_k ($k=1,2,\cdots,n$)外的一点,则上述柯西型积分在以点 z_{p0} 为中心的某个圆域 $|z-z_{p0}| < |z_{k0}-z_{p0}|$ 内还可表示为

$$\frac{1}{2\pi i} \int_{L_k} \frac{B_k(t)}{t-z} dt = \sum_{j=0}^m m_{kj} {z-z_{p0} \choose R_j}^j \qquad (k, p=1, 2, \dots, \lfloor p \rfloor \neq k)$$
 (1.16)

$$\frac{i}{2\pi i} \int_{L_h} \left(\frac{1}{2} t \bar{t} + c_k \right) \frac{dt}{t - z} = \sum_{j=0}^{m} \eta_{kj} \left(\frac{z - z_{j0}}{R_j} \right)^j \qquad (k, p = 1, 2, \dots, \lfloor \frac{m}{2} p + k)$$
 (1.17)

其中

$$m_{kj} = \sum_{r=1}^{m} (-1)^{j} C_{j+r-1}^{r-1} \left(\frac{R_{k}}{R_{p}}\right)^{r} \left(\frac{R_{p}}{z_{p_{0}} - z_{k_{0}}}\right)^{j+r} a_{kr}$$

$$\eta_{kj} = (-1)^{j} \frac{iR_{k}^{2}}{2} \cdot \frac{z_{k_{0}}}{R_{p}} \left(\frac{R_{p}}{z_{p_{0}} - z_{k_{0}}}\right)^{j+1}$$

$$(k, p=1, 2, \dots, n, \ \text{$\not \sqsubseteq} p \neq k; \ j=0, 1, 2, \dots, m)$$

$$(1.18)$$

所以在 $|z| > |z_{k0}|$ 时,由(1.9)、(1.13)和(1.14)有

$$F(z) = M(z) + \sum_{k=1}^{n} \sum_{j=1}^{m} c_{kj} \left(\frac{R_0}{z} \right)^{j}$$
 (1.19)

其中

$$c_{kj} = \sum_{s=1}^{j} C_{j-1}^{s-1} \alpha_{k}^{j-s} \beta_{k}^{s} e_{ks} \qquad {k \choose j-1, 2, \cdots, m \choose m}$$
 (1.20)

$$e_{ks} = \begin{cases} a_{k1} + \frac{i}{2} R_k z_{k0} & (k=1,2,\dots,n; s=1) \\ a_{ks} & (k=1,2,\dots,n; s=2,3,\dots,m) \end{cases}$$
 (1.21)

然后在(1.7)中令 k=0,把(1.19)代入,每一项乘以因子 $(1/2\pi i)(dt/(t-z))$, 并沿圆周 L_0 逆时针方向积分后得

$$M(z) = \sum_{k=1}^{n} \sum_{j=1}^{m} \bar{c}_{kj} \left(-\frac{z}{R_0} \right)^{j}$$
 (1.22)

此函数在 L_0 内解析,且还可表示为

$$M(z) = \sum_{k=1}^{n} \sum_{j=0}^{m} d_{kj} {z-z_{k0} \choose R_k}^{j}$$
 (1.23)

若注意到(1.20),则有

$$d_{kj} = \sum_{s=1}^{m} \bar{\alpha}_{k}^{s-j} \beta_{k}^{s+j} g_{kjs} e_{ks}$$

$$g_{kjs} = B_{k}^{j-s} A_{k}^{j+1} \sum_{r=0}^{s-1} C_{j-1}^{j-s+r} C_{j+r}^{r} B_{k}^{r} A_{k}^{r} \qquad (s=1,2,\cdots,m)$$

$$B_{k} = \bar{\alpha}_{k} \alpha_{k}, \quad A_{k} = \frac{1}{1-B_{k}} \qquad \binom{k}{j} = 1,2,\cdots, \frac{n}{m}$$

$$(1.24)$$

于是,由(1.9)、(1.11)、(1.12)和(1.22)或(1.23),得到两种不同形式的复扭曲函数 表达式

$$F(z) = \sum_{k=1}^{n} \sum_{j=1}^{m} \left[\bar{c}_{kj} \left(-\frac{z}{R_0} \right)^j + e_{kj} \left(\frac{R_k}{z - z_{k0}} \right)^j \right] \quad \text{a.s.}$$
 (1.25)

和

$$F(z) = \sum_{k=1}^{n} \left[\sum_{j=0}^{m} d_{kj} \left(\frac{z - z_{k0}}{R_k} \right)^j + \sum_{j=1}^{m} e_{kj} \left(\frac{R_k}{z - z_{k0}} \right)^j \right] \quad \text{aS ph}$$
 (1.26)

若注意到(1.19)、(1.22)和(1.9)、(1.23)、(1.16)、(1.17)、(1.11)、(1.12),则复 扭曲函数还可写为下面的形式:

$$F(z) = \sum_{k=1}^{n} \sum_{j=1}^{m} \left[\bar{c}_{kj} \left(\frac{z}{R_0} \right)^j + c_{kj} \left(\frac{R_0}{z} \right)^j \right] \qquad \text{#} |z| > |z_{k0}| \tag{1.27}$$

$$F(z) = \sum_{j=0}^{m} n_{pj} \left(\frac{z - z_{p0}}{R_p} \right)^j + \sum_{j=1}^{m} e_{pj} \left(\frac{R_p}{z - z_{p0}} \right)^j \qquad \stackrel{\text{def}}{=} |z - z_{p0}| < \min |z_{k0} - z_{p0}| \qquad (1.28)$$

$$(p, k = 1, 2, \dots, n, \ \text{dep} \neq k)$$

其中

$$n_{pj} = \sum_{k=1}^{n} d_{kj} + \sum_{k=1, (k+p)}^{n} (m_{kj} + \eta_{kj}) \qquad \left(\begin{array}{c} p = 1, 2, \dots, n \\ j = 0, 1, \dots, m \end{array} \right)$$
 (1.29)

这里,后一个和号 $\sum_{k=1,(k+p)}^{n}$ 表示当 $k=1,2,\cdots,p-1,p+1,\cdots,n$ 时n-1项之和,其中没有 $k=1,2,\cdots,p-1,p+1,\cdots,n$

p的项。而 $\min |z_{k_0}-z_{p_0}|$ 表示圆心 z_{p_0} 到其他圆心 z_{k_0} ($k=1,2,\cdots,n$, 但 $k\neq p$) 之最小距离。在(1.8)和(1.11)中令k=p, 把(1.8)、(1.28)代入(1.11)中,沿圆周 $L_p(p=1,2,\cdots,n)$ 顺时针方向积分,并注意到(1.29)、(1.24)和(1.18),最后得到

$$\sum_{k=1}^{n} \sum_{r=1}^{m} \left\{ \bar{\alpha}_{k}^{r-j} \beta_{k}^{r+j} g_{kjr} e_{kr} + (-1)^{j} C_{j+r-1}^{j} \left(\frac{R_{k}}{R_{p}} \right)^{r} \delta_{kpj} \bar{e}_{kr} \right\} - e_{pj} = l_{pj}$$

$$(p=1, 2, \dots, n; j=1, 2, \dots, m)$$

$$(1.30)$$

其中

$$\delta_{kjj} = \left\{ \begin{pmatrix} \frac{\beta_{j}}{\alpha_{j} - \alpha_{k}} \end{pmatrix}^{j+r} & \begin{pmatrix} k = 1, 2, \dots, n, & (1 + k + p) \\ 0 & (k = p = 1, 2, \dots, n) \end{pmatrix} \right.$$

$$l_{jj} = \left\{ \begin{array}{cccc} -iR_{j}z_{j0} & (p = 1, 2, \dots, n; j = 1) \\ 0 & (p = 1, 2, \dots, n; j = 2, 3, \dots, m) \end{array} \right.$$

$$(1.31)$$

(1.30)中有 $n \times m$ 个方程。由(1.30)和(1.20)或(1.24)可以求得。为了确定由(1.25)或(1.26)所表示之复扭曲函数F(z)所需之全部系数 θ_{kj} 和 c_{kj} 或 d_{kj} (k=1, 2, …, n; j=1, 2, …, m)。显然这些系数依赖于内孔之位置和半径以及圆柱体的半径。

至于(1.7)中的 c_k (k=1, 2, …, n), 不难求得。在(1.7)中把k 换为p(p=1, 2, …, n), 并把(1.28)代入,比较常数项得

$$c_{r} = \operatorname{Im} n_{r_{0}} - \frac{1}{2} \left(R_{r}^{2} + \overline{z}_{r_{0}} z_{r_{0}} \right) \qquad (p=1, 2, \dots, n)$$
 (1.32)

二、抗扭刚度和边界上的切应力

把(1.26)的实部代入(1.4)并完成积分,可求得抗扭刚度为

$$D = \mu D_0 (1 - D') \tag{2.1}$$

其中

$$D_{0} = \frac{1}{2} \pi R_{0}^{4}$$

$$D' = \sum_{k=1}^{n} D_{k} = \sum_{k=1}^{n} \beta_{k}^{4} \left[1 + 2 \frac{\overline{z}_{k0}}{R_{k}} \frac{z_{k0}}{R_{k}} + 2 \operatorname{Im} \left(\frac{\overline{z}_{k0}}{R_{k}} \frac{d_{k1} + e_{k1}}{R_{k}^{2}} \right) \right]$$
(2.2)

这里 D_k (k=1, 2, …, n)表示由于 L_k 的出现抗扭刚度的减少,它表示抗扭刚度减少了 μD_0 的多少倍。

在 (1.25) 中分开实部和虚部,并把实部代入 (1.1) 中的第三个方程,可求得未知的位 移分量

$$w = \delta \sum_{k=1}^{n} \sum_{j=1}^{m} \left\{ c'_{kj} \sum_{s=0;2,...} i^{s} C_{j}^{s} \left(\frac{x}{R_{0}} \right)^{j-s} \left(\frac{y}{R_{0}} \right)^{s} + c''_{kj} \sum_{s=1;3,...} i^{s-1} C_{j}^{s} \left(\frac{x}{R_{0}} \right)^{j-s} \left(\frac{y}{R_{0}} \right)^{s} + \left[\frac{R_{k}}{(x-x_{k0})^{2} + (y-y_{k0})^{2}} \right]^{j} e'_{kj} \sum_{s=0;2,...} i^{s} C_{j}^{s} (x-x_{k0})^{j-s} (y-y_{k0})^{s} + \left[\frac{R_{k}}{(x-x_{k0})^{2} + (y-y_{k0})^{2}} \right]^{j} e''_{kj} \sum_{s=1;3,...} i^{s-1} C_{j}^{s} (x-x_{k0})^{j-s} (y-y_{k0})^{s} \right\}$$

$$(2.3)$$

其中

微分(1.25), 并把其实部和虚部分开, 可得到如下的切应力分量

$$\tau_{xx} = \mu \delta \sum_{k=1}^{n} \sum_{j=1}^{m} \left\{ \frac{jc'_{kj}}{R_{0}} \sum_{s=0,2,...} i^{s}C_{j-1}^{s} \left(\frac{x}{R_{0}} \right)^{j-s-1} \left(\frac{y}{R_{0}} \right)^{s} + \frac{jc''_{kj}}{R_{0}} \right\}$$

$$\sum_{s=1,3,...} i^{s-1}C_{j-1}^{s} \left(\frac{x}{R_{0}} \right)^{j-s-1} \left(\frac{y}{R_{0}} \right)^{s} - \frac{j\varepsilon'_{kj}}{R_{k}} \left[\frac{R_{k}}{(x-x_{k0})^{2}+(y-y_{k0})^{2}} \right]^{j+1}$$

$$\sum_{s=0,2,...} i^{s}C_{j+1}^{s} (x-x_{k0})^{j-s+1} (y-y_{k0})^{s} - \frac{j\varepsilon''_{kj}}{R_{k}} \left[\frac{R_{k}}{(x-x_{k0})^{2}+(y-y_{k0})^{2}} \right]^{j+1}$$

$$\sum_{s=1,3,...} i^{s-1}C_{j+1}^{s} (x-x_{k0})^{j-s+1} (y-y_{k0})^{s} - y$$

$$\tau_{ys} = \mu \delta \sum_{k=1}^{n} \sum_{j=1}^{m} \left\{ -\frac{jc'_{kj}}{R_{0}} \sum_{s=1,3,...} i^{s-1}C_{j-1}^{s} \left(\frac{x}{R_{0}} \right)^{j-s-1} \left(\frac{y}{R_{0}} \right)^{s} + \frac{jc''_{kj}}{R_{0}} \right\}$$

$$(2.5)$$

$$\cdot \sum_{s=0,2,\dots} i^{s} C_{j-1}^{s} \left(\frac{x}{R_{0}} \right)^{j-s-1} \left(\frac{y}{R_{0}} \right)^{s} - \frac{j e_{kj}'}{R_{k}} \left[\frac{R_{k}}{(x-x_{k0})^{2} + (y-y_{k0})^{2}} \right]^{j+1}$$

$$\cdot \sum_{s=1,3,\dots} i^{s-1} C_{j+1}^{s} (x-x_{k0})^{j-s+1} (y-y_{k0})^{s} + \frac{j e_{kj}''}{R_{k}} \left[\frac{R_{k}}{(x-x_{k0})^{2} + (y-y_{k0})^{2}} \right]^{j+1}$$

$$\cdot \sum_{s=0,2,\dots} i^{s} C_{j+1}^{s} (x-x_{k0})^{j-s+1} (y-y_{k0})^{s} + x$$

大家知道,最大的切应力是在圆柱体的边界L, (p=0, 1, ..., n)中之一上。在(1.6)中变换坐标x, y为极坐标 ρ , θ , 把(1.27)的导数和 $z=R_0\exp[i\theta]$ 代入,我们看到,所有的实部变为零,而由虚部得到切应力 τ_0 在 L_0 上的表达式

$$\tau_0 = \frac{MR_0}{D_0} \frac{1}{1 - D'} \left\{ 1 + \sum_{k=1}^{n} \sum_{j=1}^{m} \frac{2j}{R_0^2} \left[c_{kj}'' \cos j\theta - c_{kj}' \sin j\theta \right] \right\}, \qquad \text{ ΔL_0.}$$
 (2.6)

其中 MR_{o}/D_{o} 是有同一半径 R_{o} 的圆柱体在同一力矩M作用下的最大切应力。

同样由(1.6)、(1.28)和 $z-z_{p0}=R_p \exp[i\theta]$,可从虚部得到切应力v,在 L, $(p=1, 2, \cdots, n)$ 上的表达式

$$\tau_{\bullet} = \frac{MR_{0}}{D_{0}} \frac{\beta_{\bullet}}{1 - D'} \left\{ 1 + \sum_{i=1}^{m} \frac{2i}{R_{\rho}^{2}} \left[e_{\bullet,i}^{"} \cos i\theta - e_{\bullet,i}^{"} \sin i\theta \right] \right\}, \quad \text{$\triangle L_{\bullet} \perp (p=1,2,\dots,n)$}$$
 (2.7)

于是由(2.6)和(2.7)可求得圆柱体的最大切应力的近似值。

不难证明, 上面所求得的解答满足全部边界条件和位移的单值性。

三、算 例

例 1 考虑含一个圆柱形孔的圆柱体的扭转情形,孔的坐标和半径 是 $z_{10}=x_{10}=R_0/2$, $y_{10}=0$, $R_1=R_0/4$.

对此情形
$$n=1$$
, $\alpha_1=\bar{\alpha}_1=1/2$, $\beta_1=B_1=1/4$, $A_1=4/3$ (a)

作为近似,在(1.30)、(1.20)和(1.24)中取m=5,并由此求得

$$e_{11} = 2.251851iR_1^2, e_{12} = 0.042547iR_1^2, e_{13} = 0.007198iR_1^2$$

$$e_{14} = 0.001219iR_1^2, e_{15} = 0.000207iR_1^2$$
 (b)

$$c_{11} = 0.562963iR_1^2$$
, $c_{12} = 0.284141iR_1^2$, $c_{13} = 0.143512iR_1^2$

$$c_{14} = 0.072538iR_1^2, c_{15} = 0.036693iR_1^2$$
 (c)

$$d_{11}=0.251851iR_1^2, d_{1j}=e_{1j}$$
 (j=2, 3, ...) (d)

把这些结果代入(2.3)和(2.5)就得到对于这种情形的位移分量和切应力分量的近似式。

把(b)和(d)代入(2.1)和(2.2)可求得 $D=0.925723\mu D_0$ 。由于内孔的出现抗扭刚度的减少 $D'=D_1=0.074277$ 。

把这一情形的数据和 μ_1 =0代入 [5] 中 \S 140a 的公式 (14),得到 D=0.925664 μD_0 ,而 D'= D_1 =0.074836。

把前者与后者比较,我们看到相差甚微。抗扭刚度的相对误差为一0.0086%。

显然,在 (2.6) 中令 $\theta=0$,并把(b)、(c)和(d)代入,可求得在 L。上的最大切应力的

近似值 $\tau_{0\text{max}}=1.254426MR_0/D_0$.

在 (2.7) 中令 θ =0,并把 (b)、(d) 代入,可求得在 L_1 上的最大切应力的近似值 τ_{1max} =1.325846 MR_0/D_0 。

因此圆柱体的最大切应力是在内边界 L_1 上,其值约等于具有同一 R_0 和M的实心圆柱体的最大切应力的1.325846倍。

若内孔中心与圆柱体中心 重 合,我 们 将 求 得 $e_{ij}=c_{ij}=d_{ij}=0$ (j=1,2,...,m) 和 $F(z)=\varphi=\psi=0$,从而就得到此空心圆柱体的位移分量、切应力分量和抗扭刚度 的 熟 知 公式。

例 2 考虑含两个圆柱形孔的圆柱体的扭转情形,孔的坐标和半径是 $z_{10}=x_{10}=-z_{20}=-x_{20}=R_0/2$, $y_{10}=y_{20}=0$, $R_1=R_2=R_0/4$.

对此情形
$$n=2$$
, $\alpha_1=\bar{\alpha}_1=-\alpha_2=-\bar{\alpha}_2=1/2$ $\beta_1=\beta_2=B_1=B_2=1/4$, $A_1=A_2=4/3$ (e)

在(1.30)、(1.20)和(1.24)中取m=5,并由此可求得

把这些结果代入(2.3)和(2.5)就得到对于这种情形的位移分量和切应力分量的近似式。

把(f)和(h)代入(2.1)、(2.2)可求得 $D=0.851447\mu D_0$ 。由于每个内孔的出现抗扭刚度的减少为 $D_1=D_2=0.0743$ (精确到0.0001)。

显然在(2.6)中令 $\theta=0$ 或 π , 并把(f)、(g)和(h)代入,可求得在 L_0 上最大切应力的近似值 $\tau_{0max}=1.426MR_0/D_0$ 。

在(2.7)中分别令p=1, $\theta=0$ 和p=2, $\theta=\pi$, 并把(f)和(h)代入, 可求得在 L_1 和 L_2 上最大切应力的近似值 $\tau_{1\text{max}}=\tau_{2\text{max}}=1.682MR_0/D_0$ (精确到0.001 MR_0/D_0).

因此圆柱体最大切应力是在内边界 L_1 和 L_2 上,坐标为 $\rho=3R_0/4$, $\theta=0$ 和 $\rho=-3R_0/4$, $\theta=\pi$ 的点处,其值约等于1.682 MR_0/D_0 。

参考文献

- [1] MacDonald, H. M., On the torsional strength of a hollow shaft, Proc. Cambridge Philos. Soc., 8 (1893), 62-68.
- [2] Bartels, R. C. F., Torsion of hollow cylinders, Transaction of the American Math., 53, 2 (1943), 1-13.
- [3] Weinel, E., Das Torsionsproblem für den exzentrischen Kreisring, Ingenieur Archiv., Bd. I (1932), H. I. S., 67-75.

- [4] Рухадзе А. К. и И. Н. Векуа, Задача кручения кругового цилиндра, армированного продольным круговым стержнем, Изв. АН СССР, 3 (1933), 373—386.
- [5] Мусхелишвили Н. И., Некоторные Основные Задачи Математической Теории Упругости, Изд. АН СССР (1954).
- [6] 尹昌言,有穿透裂纹的圆柱体扭转应力及应力强度因子,固体力学学报,3(1982),393-405.
- [7] Динник А. Н., Продольный Изгиб, Крученые, Изд. АН СССР (1955).

Torsion of Circular Cylinders Containing n Circular Holes

Yin Chang-yan
(Luoyang Institute of Technology, Luoyang)

Abstract

In the present paper by using complex variable methods in linear elasticity and by means of analytic continuation, the author obtains for this problem a complex torsional function, shear stress components, displacement components, the torsional rigidity and shear stresses on boundaries expressed in terms of series.