关于利用一种自变量变换求解幂硬化 材料**工**型裂纹问题的有效性的探讨

李相麟

(江西工业大学, 1988年2月29日收到)

摘要

利用物理平面与应变平面以及物理平面与应力平面的变换,可得到幂硬化材料 型裂纹尖端附近渐近解的解析式。本文讨论了此变换的有效性。分析结果表明:除幂 硬 化 材 料 的 极限情况——理想塑性外,此变换有效。

在求解幂硬化材料 \blacksquare 型裂纹尖端附近的渐近解时,通常需要用数值方法求解一个二阶常 微分方程,如将自变量x,y变换成 γ_x,γ_y 以及将自变量x,y变换成 τ_x,τ_y ,则可求出解析表达式。

■型问题的变形协调条件是

$$\frac{\partial \gamma_s}{\partial u} - \frac{\partial \gamma_g}{\partial x} = 0 \tag{1}$$

平衡方程是

$$\frac{\partial \tau_x}{\partial x} + \frac{\partial \tau_y}{\partial y} = 0 \tag{2}$$

幂硬化材料的应力应变关系为

$$\frac{\gamma_z}{\gamma_0} = \left(\frac{\tau_z}{\tau_0}\right)^n, \quad \frac{\gamma_y}{\gamma_0} = \left(\frac{\tau_y}{\tau_0}\right)^n \tag{3}$$

其中 τ_0 和 γ_0 分别是材料的屈服极限和屈服应变,n是材料硬化指数N的倒数。

在物理平面上, 应变是自变量x,y的函数

$$\gamma_z = \gamma_x(x,y), \ \gamma_y = \gamma_y(x,y)$$

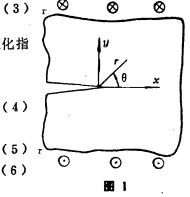
如将γェ,γ,作为自变量,即设

$$x=x(\gamma_x,\gamma_y)$$

$$y=y(\gamma_x,\gamma_y)$$

可将物理平面变换成应变平面。

由(5)式,我们有



^{*} 李灏推荐。

$$\frac{dx}{dx} = \frac{\partial x}{\partial \gamma_x} \cdot \frac{\partial \gamma_x}{\partial x} + \frac{\partial x}{\partial \gamma_y} \cdot \frac{\partial \gamma_y}{\partial x} = 1$$
 (a)

$$\frac{dx}{dy} = \frac{\partial x}{\partial y_x} \cdot \frac{\partial y_x}{\partial y} + \frac{\partial x}{\partial y_y} \cdot \frac{\partial y_y}{\partial y} = 0$$
 (b)

由(6)式,我们有

$$\frac{dy}{dx} = \frac{\partial y}{\partial \gamma_s} \cdot \frac{\partial \gamma_s}{\partial x} + \frac{\partial y}{\partial \gamma_y} \cdot \frac{\partial \gamma_y}{\partial x} = 0$$
 (c)

$$\frac{dy}{dy} = \frac{\partial y}{\partial \gamma_z} \cdot \frac{\partial \gamma_z}{\partial y} + \frac{\partial y}{\partial \gamma_y} \cdot \frac{\partial \gamma_y}{\partial y} = 1$$
 (d)

由(a)式和(b)式, 我们可得

$$\frac{\partial x}{\partial \gamma_{y}} = \begin{vmatrix} \frac{\partial \gamma_{z}}{\partial x} & 1 \\ \frac{\partial \gamma_{z}}{\partial y} & 0 \\ \frac{\partial \gamma_{z}}{\partial x} & \frac{\partial \gamma_{y}}{\partial x} \end{vmatrix} = -\frac{\partial \gamma_{z}}{\partial y} / \Delta$$

即

$$\frac{\partial \gamma_z}{\partial y} = -\Delta \frac{\partial x}{\partial \gamma_z} \tag{e}$$

设Jacobi行列式

$$\Delta = \begin{bmatrix} \frac{\partial \gamma_x}{\partial x} & \frac{\partial \gamma_y}{\partial x} \\ \frac{\partial \gamma_x}{\partial y} & \frac{\partial \gamma_y}{\partial y} \end{bmatrix} \neq 0 \tag{7}$$

由(c)式和(d)式, 我们得

$$\frac{\partial y}{\partial \gamma_{s}} = \frac{1}{\begin{vmatrix} \frac{\partial \gamma_{s}}{\partial x} \\ \frac{\partial \gamma_{s}}{\partial x} \end{vmatrix}} = \frac{1}{\begin{vmatrix} \frac{\partial \gamma_{s}}{\partial x} \\ \frac{\partial \gamma_{s}}{\partial x} \end{vmatrix}} = \frac{\frac{\partial \gamma_{s}}{\partial x}}{\frac{\partial \gamma_{s}}{\partial y}} / \Delta$$

即

$$\frac{\partial \gamma_{\mathbf{y}}}{\partial x} = -\Delta \frac{\partial y}{\partial \gamma_{\mathbf{y}}} \tag{f}$$

将(e)式和(f)式代入(1)式,可得

$$\frac{\partial x}{\partial \gamma_{\nu}} - \frac{\partial y}{\partial \gamma_{\nu}} = 0 \tag{8}$$

设 $x=x(\tau_x, \tau_y)$ 和 $y=y(\tau_x, i\tau_y)$,则又可将物理平面变换成应力平面,用与以上类似的方法可得

$$\frac{\partial x}{\partial \tau_x} + \frac{\partial y}{\partial \tau_y} = 0 \tag{9}$$

条件是其Jacobi行列式不等于零。现在我们来详细讨论Jacobi 行列式等于零的情况,从而找出在此变换中丢掉的那部分解。

由Jacobi行列式等于零、我们有

$$\Delta = \begin{vmatrix}
\frac{\partial \gamma_s}{\partial x} & \frac{\partial \gamma_y}{\partial x} \\
\frac{\partial \gamma_s}{\partial x} & \frac{\partial \gamma_y}{\partial x} \\
\frac{\partial \gamma_s}{\partial y} & \frac{\partial \gamma_y}{\partial y}
\end{vmatrix} = \frac{\partial \gamma_s}{\partial x} \cdot \frac{\partial \gamma_y}{\partial y} - \frac{\partial \gamma_s}{\partial y} \cdot \frac{\partial \gamma_y}{\partial x} \\
= \frac{\partial^2 w}{\partial x^2} \cdot \frac{\partial^2 w}{\partial y^2} - \left(\frac{\partial^2 w}{\partial x \partial y}\right)^2 = 0$$
(10)

其中w是质点沿 z轴方向的位移。将(10) 式写成极坐标形式

$$\frac{1}{r} \cdot \frac{\partial^2 w}{\partial r^2} \cdot \frac{\partial w}{\partial r} - \frac{1}{r^2} \left(\frac{\partial^2 w}{\partial r \partial \theta} \right)^2 + \frac{1}{r^2} \cdot \frac{\partial^2 w}{\partial r^2} \cdot \frac{\partial^2 w}{\partial \theta^2} + \frac{2}{r^3} \cdot \frac{\partial^2 w}{\partial r \partial \theta} \cdot \frac{\partial w}{\partial \theta} - \frac{1}{r^4} \left(\frac{\partial w}{\partial \theta} \right)^2 = 0$$

(10)'

对于理想塑性材料,有关文献给出弹性区位移 $w=-\frac{\tau_0}{G}x+F\left(\frac{\pi}{2}\right)$,塑性区位移仅是 θ 的函数 $w=F(\theta)$,其中G是材料的剪切弹性 模量, $F\left(\frac{\pi}{2}\right)$ 是常数。显而易见,弹性区位移满足

方程(10). 将 $w=F(\theta)$ 代入(10)'式,有

$$-\frac{1}{r^4}[F'(\theta)]^2=0$$

显然,此式不是恒等式。

对于幂硬化材料,即n为有限数时,可设

$$w=w(r,\theta)=\gamma_0A^nr^{\frac{1}{n+1}}S(\theta),$$

其中A为常数, $S(\theta)$ 为角分布函数。代入方程(10)'并加以整理后得

$$SS'' + n(S')^2 + \frac{1}{n+1}S^2 = 0$$
 (11)

式中 $S'=dS(\theta)/d\theta$ 。设

$$S(\theta) = e^{u}$$

我们有

$$S'=u'e^{u}$$

 $S''=u''e^{u}+(u')^{2}e^{u}$

代入方程(11)得

$$e^{u}[u''e^{u}+(u')^{2}e^{u}]+n(u')^{2}e^{2u}+\frac{1}{n+1}e^{2u}=0$$

约去因子e²u≠0,得

$$u'' + (u')^{2} + n(u')^{2} + \frac{1}{n+1} = 0$$

设u'=T,则方程化为

$$T' + (n+1)T^{2} + \frac{1}{n+1} = 0,$$

$$\frac{dT}{(n+1)T^{2} + \frac{1}{n+1}} = -d\theta$$

积分得

$$tg^{-1}[(n+1)T] = -\theta - c_1,$$

 $T = -\frac{1}{n+1}tg(\theta + c_1)$

即

$$u' = -\frac{1}{n+1} \operatorname{tg}(\theta + c_i)$$

再次积分得

$$u = \frac{1}{n+1} \ln \cos (\theta + c_1) + \frac{1}{n+1} \ln c_2$$

因此方程(11)的通解为

$$S(\theta) = \exp\left[\frac{1}{n+1}\ln c_2 \cos(\theta + c_1)\right]$$
$$= \left[c_2 \cos(\theta + c_1)\right]^{\frac{1}{n+1}},$$

其中c₁和c₂是积分常数。于是位移可表示为

$$w(r,\theta) = \gamma_0 A^n r^{\frac{1}{n+1}} \left[c_2 \cos(\theta + c_1) \right]^{\frac{1}{n+1}}$$

 θ =0处,反对称性条件是

$$w(r,0) = 0 \tag{12}$$

即

$$v_0 A^n r^{\frac{1}{n+1}} (c_2 \cos c_1)^{\frac{1}{n+1}} = 0$$

因此

$$c_1 = \frac{m\pi}{2} \qquad (m=1,3,5,\cdots)$$

则

$$\cos(\theta + c_1) = \cos\left(\theta + \frac{m\pi}{2}\right)$$

$$= \begin{cases} -\sin\theta & (m=1,5,9,\cdots) \\ \sin\theta & (m=3,7,11,\cdots) \end{cases}$$

因两种情况只相差一个符号, 所以可设满足方程(10)′和条件(12)的位移有如下形式

$$w(r,\theta) = cr^{\frac{1}{n+1}} (\sin \theta)^{\frac{1}{n+1}}$$
 (13)

其中 $c = \gamma_0 A^n c_0^{\frac{1}{n+1}}$.

在极坐标下, 应变分量为

$$\gamma_r = \frac{\partial w}{\partial r}, \quad \gamma_\theta = \frac{1}{r} \cdot \frac{\partial w}{\partial \theta}$$
 (14)

应力应变关系为

$$\gamma_r = \gamma_0 \left(\frac{\tau_r}{\tau_0}\right)^n, \quad \gamma_\theta = \gamma_0 \left(\frac{\tau_\theta}{\tau_0}\right)^n$$

或写成

$$\tau_r = \tau_0 \left(\frac{\gamma_r}{\gamma_0} \right)^{\frac{1}{n}}, \quad \tau_\theta = \tau_0 \left(\frac{\gamma_\theta}{\gamma_0} \right)^{\frac{1}{n}} \tag{15}$$

平衡方程为

$$\frac{\partial \left(r\tau_{r}\right)}{\partial r} + \frac{\partial \tau_{\theta}}{\partial \theta} = 0 \tag{16}$$

将(13)式代入(14)式,得

$$\gamma_r = \frac{\partial w}{\partial r} = \frac{c}{n+1} r^{\frac{n}{n+1}} (\sin \theta)^{\frac{1}{n+1}},$$

$$\gamma_\theta = \frac{1}{r} \cdot \frac{\partial w}{\partial \theta} = \frac{c}{n+1} r^{\frac{n}{n+1}} (\sin \theta)^{\frac{n}{n+1}} \cos \theta$$

代入(15)式,得

$$\tau_{r} = \tau_{0} \left[\frac{c}{(n+1)\gamma_{0}} \right]^{\frac{1}{n}} r^{-\frac{1}{n+1}} (\sin \theta)^{\frac{1}{n(n+1)}},$$

$$\tau_{\theta} = \tau_{0} \left[\frac{c}{(n+1)\gamma_{0}} \right]^{\frac{1}{n}} r^{-\frac{1}{n+1}} (\sin \theta)^{-\frac{1}{n+1}} (\cos \theta)^{\frac{1}{n}}$$

将它们代入(16)式,得

$$\tau_0 \left[\frac{c}{(n+1)\gamma_0} \right]_n^{\frac{1}{n}} \frac{\partial}{\partial r} \left[r^{\left(-\frac{1}{n+1} + 1\right)} \left(\sin \theta \right)_{n(n+1)}^{\frac{1}{n}} \right]$$

$$+ \tau_0 \left[\frac{c}{(n+1)\gamma_0} \right]_n^{\frac{1}{n}} \frac{\partial}{\partial \theta} \left[r^{-\frac{1}{n+1}} \left(\sin \theta \right)_{n-1}^{\frac{1}{n+1}} \left(\cos \theta \right)_n^{\frac{1}{n}} \right] = 0$$

整理得

$$n(\lg\theta)^{\frac{1}{n}} - \operatorname{ctg}\theta - \frac{n+1}{n} \operatorname{tg}\theta = 0$$

显而易见,此式不是恒等式。至此可见使Jacobi行列式等于零的位移并不满足平衡方程。我们的结论是。对于幂硬化材料的 \mathbb{I} 型裂纹尖端附近渐近解,可在应变平面和应力平面上求出解析表达式。但对于 $n\to\infty$ 的极限情况,在弹性区,本变换的Jacobi行列式等于零,这时应另行求解。

A Discussion about the Effectiveness on Using a Variate-Transformation to Find out Solutions of Mode III Crack Problems in Power Hardening Media

Li Xiang-lin

(Jiangxi Polytechnic University, Nanchang)

Abstract

By the use of the transformations of physical plane to strain plane and physical plane to stress plane, an analytic expression of the asymptotic solution near a mode I Crack tip in a power hardening medium can be obtained. In this paper the effectiveness of the transformation is discussed. Analytical results show that the transformation is effective except for a special limit case of power hardening media—the ideal plastic materials.