任意载荷下波纹圆板大挠度弹性 特征的级数解法*

卢耘耘 王秀喜 黄茂光

(中国科学技术大学近代力学系,1987年8月18日收到)

摘 要

本文以正交异性板理论为基础,提出了一种波纹圆板非线性弯曲的 Chebyshev 级数解法,推导出具有中心平台的波纹圆板在任意轴对称载荷作用下的弹性特征方程。文中 计算了几个典型的特例,数值结果表明,本文的方法对目前常用的方法有一定的改进和推广。

一、引言

波纹圆板是精密仪器仪表中的一种灵敏弹性元件,被广泛地应用于测量仪表中•因此,研究这种板的非线性弯曲问题十分重要•Φεοποςьв^[1]和陈林山^[2]从壳体大挠度方程出发,研究了浅正弦波纹圆板的大挠度特征•Aππρεεва^[3],刘人怀^[4~7]和张其浩^[8]采用各向 异性圆形薄板的大挠度理论,获得了适应各种波纹圆板的特征关系式•无论是从壳体理论还是正交异性板理论出发,由于大挠度方程本身的非线性和复杂性,精确求解十分困难•目前常用的求解方法有 Calerkin 法,能量法和修正迭代法等,一般只能对均布及集中载荷两种情况得到二次近似解,这在一定程度上影响了解的精确性和适应范围•

对于一般轴对称载荷作用下的波纹圆板,据作者所知,还一直没有被人研究。鉴于此问题是轴对称非线性问题,寻求级数形式的解析解是可能的。众所周知,对于一个给定的函数,由正交多项式的性质,用任意特殊球多项式级数展开表示时,Chebyshev级数将给出最快的收敛速度,因而它被用于求解线性和一阶非线性微分方程^[0],并成功地求解了边界层理论中的非线性偏微分分程^[10]及薄板大挠度问题^[11]。

本文以正交异性板理论为基础,提出了一种波纹圆板非线性弯曲的 Chebyshev 级 数 解法,得到了具有中心平台的波纹圆板在任意轴对称载荷作用下的弹性特征。这是一种新的尝试,可用于求解任意载荷情况。 Chebyshev 级数中的系数归结为一组非线性代 数 方程,通过迭代求解。对目前常用的方法有一定改进和推广。文中最后给出了几个典型的算例。

^{*} 刘人怀推荐。

二、基本方程和边界条件

考虑任意轴对称载荷作用下具有光滑中心的波纹圆板,其径向坐标为r,板外半径为R,光滑中心部分的半径为R1,波纹及中心平板厚均为h,如图 1 所示。为求解方便起见,引入如下无量纲参数和无量纲变量。

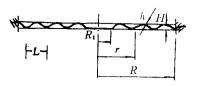


图1 具有光滑中心的波纹圆板

$$\beta_{1}^{2} = k_{t}k'_{t}, \qquad \beta_{2}^{2} = k_{r}k_{t}, \qquad \beta_{3} = D_{b}/D_{a}k_{t}
\beta_{4} = \beta_{3}/k_{t}, \qquad \beta_{5} = \beta_{0}/\beta_{4}, \qquad \beta_{0} = 6(1-\nu^{2})
y_{1} = R_{1}/R, \qquad D_{a} = Eh^{3}/12(1-\nu^{2}), \qquad D_{b} = Eh^{3}/12\left(1-\frac{\nu^{2}}{k_{t}k'_{t}}\right)$$
(2.1)

且对中心平板区域, $(0 \leq r \leq R_1)$

$$y_a = r/R_1$$
, $W_a = w/h$, $\phi_a = \frac{dW_a}{dy_a}$, $S_a = -\frac{R_1 r N_{r,a}}{D_a}$, $Q_a = \frac{R_1^4 q}{2D_a h}$ (2.2)

对波纹区域, $(R_1 \leqslant r \leqslant R)$.

$$y_{b} = r/R, W_{b} = w/h, \phi_{b} = \frac{dW_{b}}{dy_{b}}$$

$$S_{b} = -\frac{k_{t}Rr}{D_{b}} N_{r,b}, Q_{b} = \frac{R^{4}}{2D_{a}h} q = Q_{a}/y_{1}^{4}$$
(2.3)

式中w为板的挠度,N,为径向薄膜力,E 是弹性模量, ν 是泊松比,q 是载 荷 密 度(坐标r 的函数)。 k_i , k_i , k_r 是与径向和周向刚度有关的参数 $[3^{-7}]$,下角标a,b 分 别表示光滑中心和波纹部分的量。

由各向同性和各向异性圆板的大挠度理论 $[3^{-7}]$,可得无量纲化的微分方程组如下。对中心平板区域 $(0 \leq y_a \leq 1)$,有

$$y_{a}^{2} \frac{d^{2}\phi_{a}}{dy_{a}^{2}} + y_{a} \frac{d\phi_{a}}{dy_{a}} - \phi_{a} + y_{a}S_{a}\phi_{a} = y_{a}^{3}Q_{a}$$

$$y_{a}^{2} \frac{d^{2}S_{a}}{dy_{a}^{2}} + y_{a} \frac{dS_{a}}{dy_{a}} - S_{a} + y_{a}\phi_{a}^{2}\beta_{0} = 0$$

$$(2.4)$$

对波纹区域 $(y_1 \leq y_b \leq 1)$, 有

$$\left. \begin{array}{l} y_b^2 \frac{d^2 \phi_b}{dy_b^2} + y_b \frac{d\phi_b}{dy_b} - \beta_1^2 \phi_b + y_b S_b \phi_b = \frac{y_b^3 Q_b}{\beta_3} \\ y_b^2 \frac{d^2 S_b}{dy_b^2} + y_b \frac{d S_b}{dy_b} - \beta_2^2 S_b - y_b \beta_b \phi_b^2 = 0 \end{array} \right\}$$
(2.5)

我们讨论两种实际中常用的边界条件:

1) 夹紧固定情况

当
$$r=0$$
, 即 $y_a=0$ 时, $\phi_a=0$, $S_a=0$
当 $r=R$, 即 $y_b=1$ 时, $\phi_b=0$, $\frac{dS_b}{dy_b}-\frac{v}{y_b}S_b=0$, $W_b=0$ (2.6)

2) 滑动固定情况

当
$$r=0$$
, 即 $y_a=0$ 时, $\phi_a=0$, $S_a=0$
当 $r=R$, 即 $y_b=1$ 时, $\phi_b=0$, $S_b=0$, $W_b=0$ } (2.7)

中心平板与波纹部分的连续条件为:

当 $r=R_1$, 即 $y_a=1$, $y_b=y_1$ 时,

(2.8)式中的①,②,④表示广义位移连续,③,⑤表示广义力连续

三、Chebyshev 级数

第r阶 Chebyshev 多项式可以表示为[8]

$$T_r(z) = \cos r\theta, \cos \theta = z \qquad (-1 \leqslant z \leqslant 1)$$
 (3.1)

且递推关系为

$$T_{r+1}(z) = 2zT_r(z) - T_{r-1}(z), T_0(z) = 1, T_1(z) = z$$
 (3.2)

为了求解具有中心平板的波纹圆板,我们把 Chebyshev 多项式的定义区间 从 [-1, 1] 变换到 [a, 1]。令

$$T_{\tau}^{*}(z) = T_{\tau} \left(\begin{array}{c} 2z \\ 1-a \end{array} - \begin{array}{c} 1+a \\ 1-a \end{array} \right) \qquad (a \leqslant z \leqslant 1)$$
 (3.3)

对应的递推关系为

$$T_{\tau+1}^{*}(z) = 2 \left(\frac{2z}{1-a} - \frac{1+a}{1-a} \right) T_{\tau}^{*}(z) - T_{\tau-1}^{*}(z)$$

$$T_{0}^{*}(z) = 1, \quad T_{1}^{*}(z) = \frac{2z}{1-a} - \frac{1+a}{1-a}$$

$$(3.4)$$

在区间[a, 1]的正交条件为

$$\int_{a}^{1} T_{n}^{*}(z) T_{n}^{*}(z) \left[(1-a)^{2} - (2z-1-a)^{2} \right]^{-\frac{1}{2}} dz = \begin{cases} 0, & m \neq n \\ \pi/4, & m = n \neq 0 \\ \pi/2, & m = n = 0 \end{cases}$$
 (3.5)

如果函数 g(z) 在区间 $a \le z \le 1$ 连续,则 g(z) 可以用 Chebyshev 级数表示如下:

$$g(z) = \frac{a_0}{2} + \sum_{r=1}^{n} a_r T_r^*(z)$$
 (3.6)

由正交条件(3.5),级数中的系数为

$$a_{\tau} = \frac{4}{\pi} \int_{a}^{1} g(z) T_{\tau}^{*}(z) \left[(1-a)^{2} - (2z-1-a)^{2} \right]^{-\frac{1}{2}} dz$$
 (3.7)

$$(r=0, 1, 2, \cdots, n)$$

Chebyshev 多项式导数之间的递推关系是

$$\frac{1}{r+1} T_{r+1}^{*(k+1)}(z) - \frac{1}{r-1} T_{r-1}^{*(k+1)}(z) = \frac{4}{1-a} T_{r}^{*(k)}(z) \qquad (a \le z \le 1)$$
 (3.8)

其中上标表示导数的阶数。

设函数 g(z)的第 k 阶导数可用 Chebyshev 级数表示成

$$g^{(k)}(z) = \frac{a_0^{(k)}}{2} + \sum_{r=1}^{n-1} a_r^{(k)} T_r^*(z)$$
 (3.9)

则系数 a,(k) 与 a,(k+1) 之间的递推关系是:

$$a_{r-1}^{(k+1)} - a_{r+1}^{(k+1)} = \frac{4r}{1-a} a_r^{(k)}$$
(3.10)

Chebyshev 多项式的乘积项 $T_n^*(z)T_n^*(z)$ 可表示为

$$T_{m}^{*}(z)T_{n}^{*}(z) = \frac{1}{2} \left[T_{m+n}^{*}(z) + T_{m-n+1}^{*}(z) \right]$$
 (3.11)

如果 g(z)和 f(z)用 Chebyshev 级数表示成:

$$g(z) = \frac{a_0}{2} + \sum_{r=1}^{n} a_r T_r^*(z) = \sum_{r=0}^{n} a_r T_r^*(z)$$

$$f(z) = \frac{b_0}{2} + \sum_{r=1}^{n} b_r T_r^*(z) = \sum_{r=0}^{n} b_r T_r^*(z)$$
(3.12)

则这两个函数的乘积 g(z) f(z) 可以表示为

$$g(z)f(z) = \frac{c_0}{2} + \sum_{r=1}^{n} c_r T_r^*(z)$$
 (3.13)

其中

$$c_{0} = \sum_{i=0}^{n} 'a_{i}b_{i}$$

$$c_{r} = \frac{1}{2} \sum_{i=0}^{n} 'a_{i}(b_{|i-r|} + b_{r+i})$$

$$= \frac{1}{2} \sum_{i=0}^{n} 'b_{i}(a_{|i-r|} + a_{i+r})$$
(i=1, 2, 3, ..., n) (3.14)

上式中, 所有下标大于 n 的系数均为零。

四、问题的求解

无量纲化的非线性边值问题(2.4)~(2.8)很难求得精确解。通常用 Calerkin 法、能量法、或修正迭代法得到受均布载荷和集中载荷情况的二次近似解。本文用 Chebyshev 级 数 逼近精确解,可以求解任意轴对称载荷作用下的波纹圆板大挠度问题。

对中心平板区域 $(0 \leq y_a \leq 1)$, 设

$$W_a = \frac{W_0}{2} + \sum_{r=1}^{N_2+3} W_r T_r^*(y_a)$$
 (4.1a)

$$\phi_a = \frac{dW_a}{dy_a} = \frac{\phi_0}{2} + \sum_{r=1}^{N_2+2} \phi_r T_r^*(y_a)$$
 (4.1b)

$$\phi_a^{(1)} = \frac{d\phi_a}{dy_a} = \frac{\phi_0^{(1)}}{2} + \sum_{r=1}^{N_2+1} \phi_r^{(1)} T_r^*(y_a)$$
 (4.1c)

$$\phi_a^{(2)} = \frac{d^2 \phi_a}{dy_a^2} = \frac{\phi_0^{(2)}}{2} + \sum_{r=1}^{N_2} \phi_r^{(2)} T_r^*(y_a)$$
 (4.1d)

$$S_a = \frac{S_0}{2} + \sum_{r=1}^{N_2+2} S_r T_r^*(y_a)$$
 (4.2a)

$$S_a^{(1)} = \frac{dS_a}{dy_a} = \frac{S_0^{(1)}}{2} + \sum_{r=1}^{N_2+1} S_r^{(1)} T_r^*(y_a)$$
 (4.2b)

$$S_a^{(2)} = \frac{d^2 S_a}{dy_a^2} = \frac{S_0^{(2)}}{2} + \sum_{r=1}^{N_2} S_r^{(2)} T_r^*(y_a)$$
 (4.2c)

对波纹区域 $(y_1 \leq y_b \leq 1)$, 设

$$W_b = \frac{W_0}{2} + \sum_{r=1}^{N_1+3} W_r T_r^*(y_b)$$
 (4.3a)

$$\phi_b = \frac{dW_b}{dy_b} = \frac{\overline{\phi}_0}{2} + \sum_{s=1}^{N_1+2} \overline{\phi}_s T_s^*(y_b)$$
 (4.3b)

$$\phi_b^{(1)} = \frac{d\phi_b}{dy_b} = \frac{\overline{\phi}_b^{(1)}}{2} + \sum_{r=1}^{N_1+1} \overline{\phi}_r^{(1)} T_r^*(y_b)$$
 (4.3c)

$$\phi_b^{(2)} = \frac{d^2 \phi_b}{dy_b^2} = \frac{\overline{\phi}_b^{(2)}}{2} + \sum_{r=1}^{N_1} \overline{\phi}_r^{(2)} T_r^*(y_b)$$
 (4.3d)

$$S_b = \frac{\overline{S}_0}{2} + \sum_{r=1}^{N_1+2} \overline{S}_r T_r^*(y_b)$$
 (4.4a)

$$S_b^{(1)} = \frac{dS_b}{dy_b} = \frac{\overline{S}_b^{(1)}}{2} + \sum_{r=1}^{N_1+1} \overline{S}_r^{(1)} T_r^*(y_b)$$
 (4.4b)

$$S_b^{(2)} = \frac{d^2 S_b}{dy_b^2} = \frac{\bar{S}_0^{(2)}}{2} + \sum_{r=1}^{N_1} \bar{S}_r^{(2)} T_r^*(y_b)$$
 (4.4c)

$$y_a^3 Q_a = \frac{Q_0}{2} + \sum_{r=1}^{N_2} Q_r T_r^* (y_a)$$
 (4.5a)

$$y_b^3 Q_b = \frac{\bar{Q}_0}{2} + \sum_{r=1}^{N_1} \bar{Q}_r T_r^* (y_b)$$
 (4.5b)

由式(3.4), 方程(2.4)和(2.5)中的乘积项能表示为 Chebyshev 级数形式,例如

$$y_{\phi}^{2} \frac{d^{2} \phi_{b}}{dy_{b}^{2}} = \sum_{r=1}^{N_{1}+2} \overline{\phi}_{1r-2}^{(2)} \frac{B^{2}C^{2}}{16} T_{\tau}^{*} + \sum_{r=1}^{N_{1}+1} \frac{BC^{2}}{4} \overline{\phi}_{1r-1}^{(2)} T_{\tau}^{*}$$

$$+ \sum_{r=0}^{N_{1}} \frac{C^{2}}{4} \left(\frac{B^{2}}{2} + 1 \right) \overline{\phi}_{r}^{(2)} T_{\tau}^{*} + \sum_{r=0}^{N_{1}-1} \frac{BC^{2}}{4} \overline{\phi}_{1r+1}^{(2)} T_{\tau}^{*}$$

$$+ \sum_{r=0}^{N_{1}-2} \frac{B^{2}C^{2}}{16} \overline{\phi}_{r+2}^{(2)} T_{\tau}^{*}$$

$$(4.6a)$$

$$y_b \frac{d\phi_b}{dy_b} = \sum_{r=1}^{N_1+3} \frac{BC}{4} \overline{\phi}_{1r-1}^{(1)} T^* + \sum_{r=0}^{N_1+1} \frac{C}{2} \overline{\phi}_r^{(1)} T^* + \sum_{r=0}^{N_1+1} \frac{BC}{4} \overline{\phi}_{r+1}^{(1)} T^*$$
 (4.6b)

其中, $B=(1-y_1)/(1+y_1)$, $C=1+y_1$

对其它所有乘积项,都有类似的表达式。

将式(4.1)~(4.5),(4.6)以及其它类似的表达式,代入方程(2.4)和(2.5),并分别令各个 $T^*(y_b)$ 及 $T^*(y_a)$ 的系数为零,得到:对中心平板区域(0 $\leq y_a \leq 1$),

$$\frac{3}{16}\phi_{0}^{(2)} + \frac{1}{16}\phi_{2}^{(2)} + \frac{1}{4}\phi_{1}^{(2)} + \frac{1}{4}\phi_{0}^{(1)} + \frac{1}{4}\phi_{1}^{(1)} - \frac{1}{2}\phi_{0} \\
+ \frac{1}{4}c_{0} + \frac{1}{4}c_{1} = \frac{1}{2}Q_{0} \qquad (r=0)$$

$$\frac{1}{16}\phi_{1r-2}^{(2)} + \frac{1}{4}\phi_{1r-1}^{(2)} + \frac{3}{8}\phi_{r}^{(2)} + \frac{1}{16}\phi_{r+2}^{(2)} + \frac{1}{4}\phi_{r+1}^{(2)} \\
+ \frac{1}{4}c_{1r-1}^{(1)} + \frac{1}{2}\phi_{r}^{(1)} + \frac{1}{4}\phi_{r+1}^{(1)} - \phi_{r} + \frac{1}{4}c_{r-1} \\
+ \frac{1}{2}c_{r} + \frac{1}{4}c_{r+1} = Q_{r} \qquad (r=1,2,\cdots,N_{2})$$

$$\frac{3}{16}S_{0}^{(2)} + \frac{1}{16}S_{2}^{(2)} + \frac{1}{4}S_{1}^{(2)} + \frac{1}{4}S_{0}^{(1)} + \frac{1}{4}S_{1}^{(1)} - \frac{1}{2}S_{0} \\
- \frac{1}{4}\beta_{0}(b_{0} + b_{1}) = 0 \qquad (r=0)$$

$$\frac{1}{16}S_{1r-2}^{(2)} + \frac{1}{4}S_{1r-1}^{(2)} + \frac{3}{8}S_{r}^{(2)} + \frac{1}{16}S_{r+2}^{(2)} + \frac{1}{4}S_{r+1}^{(2)} \\
+ \frac{1}{4}S_{r-1}^{(1)} + \frac{1}{2}S_{r}^{(1)} + \frac{1}{4}S_{r+1}^{(1)} - S_{r} - \frac{1}{4}\beta_{0}(b_{r-1}) \\
+ 2b_{r} + b_{r+1}) = 0 \qquad (r=1,2,\cdots,N_{2})$$

$$(4.7a)$$

对波纹区域 $(y_1 \leq y_b \leq 1)$,

$$\frac{C^{2}}{8} \left(\frac{B^{2}}{2} + 1 \right) \overline{\phi}_{0}^{(2)} + \frac{B^{2}C^{2}}{16} \overline{\phi}_{2}^{(2)} + \frac{BC^{2}}{4} \overline{\phi}_{1}^{(2)} + \frac{C}{4} \overline{\phi}_{0}^{(1)} + \frac{C}{4} \overline{\phi}_{0}^{(1)} + \frac{BC}{4} \overline{\phi}_{0}^{(1)} - \frac{1}{2} \beta_{1}^{2} \overline{\phi}_{0} + \frac{1}{4} C(f_{0} + Bf_{1}) = \frac{\overline{Q}_{0}}{2\beta_{3}} \qquad (r = 0)$$

$$\frac{B^{2}C^{2}}{16} \overline{\phi}_{1r-2+}^{(2)} + \frac{BC^{2}}{4} \overline{\phi}_{r-1}^{(2)} + \frac{C^{2}}{4} \left(\frac{B^{2}}{2} + 1 \right) \overline{\phi}_{r}^{(2)} + \frac{B^{2}C^{2}}{16} \overline{\phi}_{r+2}^{(2)} + \frac{BC}{4} \overline{\phi}_{r+1}^{(1)} + \frac{C}{2} \overline{\phi}_{r}^{(1)} + \frac{BC}{4} \overline{\phi}_{r+1}^{(1)} + \frac{C^{2}}{4} \overline{\phi}_{r+1}^{(2)} + \frac{B^{2}C^{2}}{4} \overline{\phi}_{r+1}^{(2)} + \frac{B^{2}C^{2}}{16} \overline{\phi}_{r+2}^{(2)} + \frac{BC^{2}}{4} \overline{\phi}_{r+1}^{(2)} + \frac{BC}{4} \overline{\phi$$

其中

$$c_{0} = \sum_{i=0}^{N_{2}+2} S_{i}\phi_{i}$$

$$c_{r} = \frac{1}{2} \sum_{i=0}^{N_{2}+2} \phi_{i}(S_{|i-r|} + S_{i+r}) \qquad (r = 1, 2, \dots, N_{2}+2)$$

$$b_{0} = \sum_{i=0}^{N_{2}+2} \phi_{i}^{2}$$

$$b_{r} = \frac{1}{2} \sum_{i=0}^{N_{2}+2} \phi_{i}(\phi_{|i-r|} + \phi_{i+r}) \qquad (r = 1, 2, \dots, N_{2}+2)$$

$$f_{0} = \sum_{i=0}^{N_{1}+2} \overline{S}_{i}\overline{\phi}_{i}$$

$$f_{r} = \frac{1}{2} \sum_{i=0}^{N_{1}+2} \overline{\phi}_{i}(\overline{S}_{|i-r|} + \overline{S}_{i+r}) \qquad (i = 1, 2, \dots, N_{1}+2)$$

$$g_0 = \sum_{i=0}^{N_1+2} \vec{\phi}_i^2$$

$$g_{r} = \frac{1}{2} \sum_{i=0}^{N_{i}+2} \vec{\phi}_{i} (\vec{\phi}_{|i-r|} + \vec{\phi}_{i+r}) \qquad (i=1,2,\cdots,N_{1}+2)$$

边界条件(2.6)、(2.7)可表示成

1) 夹紧固定情况

$$y_{a}=0, \qquad \frac{1}{2}\phi_{0} + \sum_{r=1}^{N_{2}+2} (-1)^{r}\phi_{r}=0, \quad \frac{1}{2}S_{0} + \sum_{r=1}^{N_{2}+2} (-1)^{r}S_{r}=0$$

$$y_{b}=1, \qquad \frac{1}{2}\overline{\phi}_{0} + \sum_{r=1}^{N_{1}+2} \overline{\phi}_{r}=0$$

$$\frac{1}{2}\overline{S}_{0}^{(1)} + \sum_{r=1}^{N_{1}+1} \overline{S}_{r}^{(1)} - \nu \left(\frac{\overline{S}_{0}}{2} + \sum_{r=1}^{N_{1}+2} \overline{S}_{r}\right) = 0$$

$$(4.9)$$

2) 滑动固定情况

$$y_{a}=0, \qquad \frac{1}{2}\phi_{0} + \sum_{r=1}^{N_{2}+2} (-1)^{r}\phi_{r}=0, \quad \frac{1}{2}S_{0} + \sum_{r=1}^{N_{2}+2} (-1)^{r}S_{r}=0$$

$$y_{b}=1, \qquad \frac{1}{2}\overline{\phi}_{0} + \sum_{r=1}^{N_{1}+2} \overline{\phi}_{r}=0, \quad \frac{1}{2}\overline{S}_{0} + \sum_{r=1}^{N_{1}+2} \overline{S}_{r}=0$$

$$(4.10)$$

连续条件(2.8)可表示成:

$$\frac{1}{2} S_{0}^{(1)} + \sum_{r=1}^{N_{2}+1} S_{r}^{(1)} - \nu \left(\frac{1}{2} S_{0} + \sum_{r=1}^{N_{2}+2} S_{r} \right) \\
= y_{1}^{2} \beta_{4} \left[\frac{1}{2} \overline{S}_{0}^{(1)} + \sum_{r=1}^{N_{1}+1} (-1)^{r} \overline{S}_{r}^{(1)} - \frac{\nu}{y_{1}} \left(\frac{1}{2} \overline{S}_{0} + \sum_{r=1}^{N_{1}+2} (-1)^{r} \overline{S}_{r} \right) \right] \tag{4.11}$$

$$\begin{array}{ll}
\hat{\mathbf{G}} & \frac{1}{2}\phi_{0}^{(1)} + \sum_{r=1}^{N_{2}+1}\phi_{r}^{(1)} + \nu\left(\frac{1}{2}\phi_{0} + \sum_{r=1}^{N_{2}+2}\phi_{r}\right) \\
&= y_{1}^{2}\beta_{3}\left[\frac{1}{2}\overline{\phi}_{0}^{(1)} + \sum_{r=1}^{N_{1}+1}(-1)^{r}\overline{\phi}_{r}^{(1)} + \frac{\nu}{y_{1}}\left(\frac{1}{2}\overline{\phi}_{0} + \sum_{r=1}^{N_{1}+2}(-1)^{r}\overline{\phi}_{r}\right)\right]
\end{array}$$

对挠度有

$$\frac{1}{2} W_{0} + \sum_{r=1}^{N_{1}+3} W_{r} = 0$$

$$\frac{1}{2} W_{0} + \sum_{r=1}^{N_{1}+3} (-1)^{r} W_{r} = \frac{1}{2} W_{0} + \sum_{r=1}^{N_{2}+3} W_{r}$$
(4.12)

中心挠度

$$W_{o} = \frac{1}{2}W_{o} + \sum_{r=1}^{N_{z}+3} (-1)^{r}W_{r}$$
 (4.13)

由 Chebyshev 级数系数之间递推关系 (3.10) 式,在以上控制方程,边界条件和连续条件中消去 $\phi_a^{(1)}$, $\phi_b^{(2)}$, $S_a^{(1)}$, $\phi_b^{(2)}$, $S_a^{(1)}$, $\phi_b^{(2)}$, $\delta_b^{(1)}$, $\phi_b^{(2)}$, $\delta_b^{(1)}$ 及 $\delta_b^{(2)}$, 最后得到仅 含 $2(N_1+N_2)+12$ 个未知数 ϕ_a , δ_a , δ_b 及 δ_b 的非线性代数方程组,而方程(4.7),(4.8) 及边界 条 件,连 续条件正好也是 $2(N_1+N_2)+12$ 个。 利用(3.14)式,该非线性代数方程组可化为如下 形式:

$$\{\psi(\xi)\} = [K]\{\xi\} - \{F\} = 0 \tag{4.14}$$

其中[K]是与未知量有关的非线性矩阵, $\{\xi\}$ 是待求的 Chebyshev 系数, $\{F\}$ 是仅与载荷有关的常向量。

用 Newton-Raphson 方法,我们已有一近似的解 $\{\xi\}_i$,用截断的一阶台劳级数 得 到 一个改进的解

$$\{\psi(\xi_{i+1})\} = \{\psi(\xi_i)\} + \frac{\partial\{\psi\}}{\partial \xi_i} \{\Delta \xi_i\} = 0 \tag{4.15}$$

及
$$\xi_{i+1} = \xi_i + \Delta \xi_i \tag{4.16}$$

于是
$$\{\Delta \xi_i\} = -[K_i]_{\tau}^{-1}([K_i]\{\xi_i\} - \{F\})$$
 (4.17)

石端括号中的项表示第 i 次迭代的不平衡力。式(4.16)及(4.17)就是我们最后迭代 求 解 的格式。求出 ϕ_a 和 ϕ_b 后、由递推关系(3.10)式及(4.12),(4.13)式,求出中心挠度 W_{co}

五、算例及讨论

作为任意载荷的特例,我们计算了受均布载荷或集中载荷情况波纹圆板的大挠度弹性特性,对均布载荷情况,(4.5)式化为

$$y_a^3 Q_a = \frac{R_1^4 q}{2D_a h} \left(\frac{5}{16} T_0^* + \frac{5}{32} T_1^* + \frac{3}{16} T_2^* + \frac{1}{32} T_3^* \right)$$
 (5.1a)

$$y_b^3 Q_b = \frac{R^4 q}{2D_a h} \begin{bmatrix} C^3 & \left(\frac{3B^2}{2} + 1\right) T_b^* + \frac{3BC^3}{8} \left(1 + \frac{B^2}{4}\right) T_1^* \\ + \frac{3C^3 B^2}{16} T_2^* + \frac{B^3 C^3}{32} T_3^* \end{bmatrix}$$
 (5.1b)

对集中载荷情况, (4.5)式化为

$$y_{a}^{3}Q_{a} = \frac{R_{1}^{2}P}{2\pi\hbar D_{a}} \left(\frac{1}{2}T_{0}^{*} + \frac{1}{2}T_{1}^{*}\right)$$
 (5.2a)

其中 q 和 P 分别为均布载荷密度和集中载荷。

例 1 作为具有光滑中心波纹板特例,绘制无光 滑中心(即 R_1 =0)的正弦截面波纹圆板在均布载荷作用下的特征曲线。

假设板的周边为滑动固定边界条件,并且 $E=10^4$ kg/mm², $\nu=0.3$, R=76mm, H=1.2mm, h=0.33mm, l=50.667mm, 由(5.1)式得到, $N_2=0$, $Q_a=0$,此时中心挠度为

$$W_c = \frac{1}{2} \overline{W}_0 + \sum_{r=1}^{N_1+3} (-1)^r \overline{W}_r \qquad (5.3)$$

绘制的特征曲线与实验值比较见图 2 · 图中还给出了文[1]、[2]及[4]的 理 论 结 果 · 显然,本文的结果与实验值符合良好 ·

表 1 给出了 Chebyshev 级数中所取项数 N_1 对中心挠度精度的影响。由表中可看出,该级数收敛 很快,一般只要取10 项左右,其结果的精度已足够满足工程需要。

例 2 绘制具有光滑中心的锯齿形截面波纹圆 板的特征曲线。

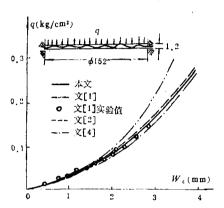


图 2 计算值与实验值的比较

表 1

Chebyshev 级数的项数对中心挠度 W_c 的影响 $(q=0.15 \text{kg/mm}^2)$

r	N_1					
	6	8	10	12	14	
0	10.730340	10.726420	10.726660	10.726670	10.726670	
1	-4.583931	-4.582811	-4.582882	-4.582880	-4.582880	
2	-1.359110	-1.358308	-1.358340	-1.358341	-1.358341	
3	0.197634	0.197378	0.197400	0.197398	0.197398	
4	0.236367	0.235819	0.235787	0.235788	0.235788	
5	0.777041×10^{-1}	0.808723×10 ⁻¹	0.807790×10^{-1}	0.807794×10^{-1}	0.807794×10^{-1}	
6	0.471066×10^{-1}	0.466937×10 ⁻¹	0.468001×10^{-1}	0.467999×10^{-1}	0.467999×10^{-1}	
7	0.229126×10^{-1}	0.186243×10 ⁻¹	0.185780×10^{-1}	0.185685×10^{-1}	0.185684×10 ⁻¹	
8	-0.645045×10^{-3}	0.692532×10^{-3}	0.505215×10^{-3}	0.527618×10^{-3}	0.527478×10^{-3}	
9	-0.321111×10^{-2}	-0.139275×10^{-2}	-0.110793×10^{-2}	-0.114610×10^{-2}	-0.114515×10^{-2}	
10		-0.651751×10^{-3}	-0.504375×10^{-3}	-0.518250×10^{-3}	-0.519198×10^{-3}	
11		-0.125497×10^{-3}	-0.373120×10^{-3}	-0.290160×10^{-3}	-0.289634×10^{-3}	
12		 	-0.412591×10^{-4}	-0.654286×10^{-4}	-0.618357×10^{-4}	
13			0.672930×10 ⁻⁴	0.263501×10 ⁻⁴	0.214957×10 ⁻⁴	
14				0.175129×10 ⁻⁴	0.138727×10 ⁻⁴	
15				0.198138×10 ⁻⁵	0.702868×10 ⁻⁵	
16					0.115032×10 ⁻⁵	
17					-0.155893×10^{-5}	
W_{c}	2.830668	2.829719	2.829775	2.829778	2.829778	

假设板的周边为夹紧固定边界条件,并且 $E=1.35\times10^4$ kg/mm², $\nu=0.3$, $R_1=5.1$ mm,R=24mm,H=0.414mm,h=0.101mm, $\theta_0=8^\circ45'$,l=10.8mm,在均布载 荷作 用 下,

用本文方法计算的理论结果及其他作者([3],[4],[5],[8])的理论结果比较见表2, 绘制的特征曲线及和实验结果的比较见图3.

恚	2
48	4

均布载荷下板的中心挠度

q	文[3]	文[8]	文[4]	文[5]	本文
0.1	0.62703	0.62570	0.61725	0.64125	0.62110
0.2	0.94364	0.90653	0.89444	0.93123	0.89827
0.3	1.15714	1.09501	1.08055	1.12595	1.09942
0.4	1.32237	1.24134	1.22490	1.27695	1.25850
0.5	1.45923	1.36275	1.34473	1.40228	1.39191
0.6	1.57717	1.46759	1.44821	1.51049	1.50776
0.8	1.77549	1.64429	1.62261	1 69284	1.70389
1.0	1.94060	1.79174	1.76814	1.84498	1.89799

例 3 绘制例 2 中的锯齿形截面波纹圆板在集中载荷作用下的特征曲线。

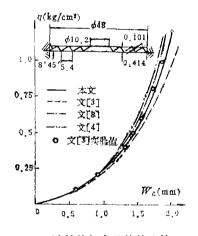


图 3 计算值与实验值的比较

利用式(5,2),本文计算的结果与文[6]的理论结果比较见表 3。其中文[6]是用修正迭代法得到的二次近似解,根据这些结果可绘制特征曲线。

表 3	樂中 载荷下 极的中心 挠 度					
P	文[6]	本文				
0.5	0.67142	0.65175				
1.0	0.96741	0.95947				
1.5	1.16613	1.17101				
2.0	1.32034	1.33677				
2.5	1.44841	1.47513				
3.0	1.55904	1.59499				
3.5	1.65709	1.70144				
4.0	1.74557	1.79763				
6 No. of 1947 to 1921 At 19						

六、结 论

本文把 Chebyshev 级数用于波纹圆板轴对称大挠度弯曲问题,推导出相应的控制 方程和边界条件。这种方法可用于分析受一般轴对称载荷情况问题,通过 增加 Chebyshev 级数中的项数,可以不断提高精度。数值结果表明,在 Chebyshev 级数中仅取不多几项就能达到较高精度。在求解精度和应用范围方面对目前文献中常用的方法有所改进和推广。

参考文献.

- [1] Феоцосеьв В. И., «精密仪器弹性元件的理论与计算», 科学出版社, 北京 (1963).
- [2] 陈山林, 浅正弦波纹圈板在均布载荷下的大挠度弹性特征,应用数学和力学, 1,2 (1980), 261 —272.
- [3] Андреева Л. Е., Упруше Элемены Приборов, Машгиз, Москва (1962).
- [4] 刘人怀,波纹圆板的特征关系式,力学学报,1(1978),47--52.
- [6] 刘人怀,具有光滑中心的波纹圆板的特征关系式,中国科学技术大学学报,9,2(1979),75—86,

- [6] Liu, R. H., Large deflection of corrugated circular plate with a plane central region under the action of concentrated loads at the center, Int. J. Non-Linear Mech., 19, 5 (1984), 409-419.
- [7] Liu, R. H., Large deflection of corrugated circular plate with plane boundary region, Solid Mechanics Archives, 9, 4 (1984), 383-405.
- [8] 张其浩,波纹圆板的特征关系的研讨,力学与实践,2,3(1980),64-66.
- [9] Fox, L. and I. B. Parker, Chebyshev Polynomials in Numerical Analysis, Oxford University Press, London (1968).
- [10] Jaff, N. A. and J. Thomas, Application of quasi-linearization and Chebyshev series to the numerical analysis of the laminar boundary-layer equations, AIAA J., 8, 3 (1970), 483-490.
- [11] Alwar, R. S. and Y. Nath, Application of Chebyshev polynomials to the non-linear analysis of circular plates, Int. J. Mech. Sci., 18, 11-12 (1976), 589-595.

Series Soution for Elastic Behavior of Corrugated Circular Plates in Large Deflection under Arbitrary Loads

Lu Yun-yun Wang Xiu-xi Huang Mao-kuang

(University of Science and Technology of China, Hefei)

Abstract

Chebyshev polynomials are used to solve the problem of large deflection for corrugated circular plates with a plane central region under arbitrary loads based on the non-linear bending theory of anisotropic circular plates. Numerical results are compared with those available in the literature. The present method shows higher accuracies and larger application ranges.