Stokes 波高阶谐波系数递推的数值计算*

宋 涛 李家春

(中国科学院力学研究所, 1987年6月10日收到)

摘 要

本文用W. H. Hui提出的方法,在半物理平面内重新表述了Stokes 波的数学模型和边界条件,提出了两种更有效的数值计算方法来获得Stokes 波高阶谐波系数,并可递推至无穷。通过小参数转换,重新得到了Cokelet(1977)的波速和半波高的摄动展开式。

一、引言

自从十九世纪Stokes(1847)对水波问题做了开创性的工作以来,人们一直沿用他的方法来进行研究。近二十多年来,计算机的发展使人们有可能对高阶Stokes波进行求解,以便更好地了解 Stokes 波在波陡趋于极限时的非线性性质^[1]。Schwartz于一九七四年,用小参数摄动展开的方法,借助于现代的计算机,成功地给出了 Stokes 波的高阶级数解^[2]。随后,Cokelet(1977)采用另一新的小参数,计算了波速、动量和能量等物理量^[3]。他们的工作使我们对大波陡时Stokes波的非线性性态有了新的认识。Stokes的方法虽然在水波的许多问题中得到了广泛的应用,但却受到了无旋运动与二维平面问题的限制,且自由面是以隐函形式给出的,这给波面方程的计算带来许多不便。另外,对于不同阶的摄动展开系数需要从零阶重新计算,使数值求解时不必要地做了许多重复性工作。本文根 据 W. H. Hui(1982)提出的一种新方法^[4],采用 (x, ψ) 半物理平面表述,重新给出了控制方程与边界条件。在假定了解的合适形式后,使各阶摄动解的系数可用递推公式直接计算,避免了大量的重复性运算。该方法的另一显著优点是不受流体无旋与二维平面问题的限制,可推广到有旋和三维运动的物理问题中去,并且可以容易地引入表面张力作用^[4]。这些内容超出了本文所涉及的范围。故不再赘述,感兴趣的读者可参阅有关文献。

W.H.Hui在他的计算中采用了MAPLE软件系统(一种符号解析运算程序——Symbolic Computation)进行计算,得到了波面和波速的解。但由于计算机容量的限制,只计算到十一阶。最近,他们导出了递推公式的显式表达式,多重求和次序的改变使公式极其复杂与冗长。本文作者认为,利用计算机的逻辑功能,不必导出显式即可进行递推,使表达式大为简化。而且也不一定依赖 Symbolic Computation 来得到系数的有理式。我们根据国内计算机软件的发展状况,给出了系数的迭加递推公式和 Fourier 级数两种计算方法,在普通计算机

^{*} 本文系国家自然科学基金资助课题.

上进行计算并给出了更高阶的波形和波速的摄动解。然后,通过小参数转换,重新得到了Cokelet的结果,从而说明了本方法的正确性与有效性。

二、基本方程和解

考察自由面上无旋、无粘和不可压缩的有限振幅深水重力波,其相速度为 c。 这一古典的流体力学问题可以通过选取一个以速度 c 随波浪一起运动的坐标系而化为在该参考系中求定常解的问题。选择x为直角坐标系的水平方向,y为垂直向上,则控制方程为:

$$u_s + v_s = 0 \tag{2.1}$$

$$u \cdot u_x + v \cdot u_y = -p_x/\rho \tag{2.2}$$

$$u \cdot v_z + v \cdot v_z = -p_y/\rho - g \tag{2.3}$$

其中 ρ 是流体密度,p是压力,g是重力加速度。u和v分别是流体质点在水平和铅垂方向的速度分量。下标表示相应的偏导数。

引入流函数 $\psi(x,y)$ 有:

$$u = \psi_{x}; \quad v = -\psi_{x} \tag{2.4}$$

将(2.4)代入(2.2), (2.3)和Bernoulli边界条件,并注意到运动无旋的假设,我们有:

$$\psi_{zz} + \psi_{yy} = 0 \tag{2.5}$$

$$\psi_{x}^{2} + \psi_{x}^{2} + 2gy = 2K, \quad \psi = 0 \tag{2.6}$$

其中K是 Bernoulli 常数; $\psi=0$ 是流动的自由面边界。

根据文献[4]和[5],当流线 ψ等于常数没有垂向切线时,可设:

$$y = y(x, \psi) \tag{2.7}$$

即把x和 ψ 看作是自变量,而把其它物理量看作是x和 ψ 的 函数。将(2.7)代入方程(2.5)和(2.6)并取特征长度 $L=1/k=\lambda/2\pi$ 和特征速度C=c对方程进行无量纲化,得.

$$y_{\phi}^{2}y_{ex} - 2y_{e}y_{\phi}y_{x\phi} + (1 + y_{x}^{2})y_{\phi\phi} = 0$$
 (2.8)

$$y_{\psi}^{-2}(1+y_{\psi}^{2})+2\delta y=2K, \ \psi=0$$
 (2.9)

$$y \sim \psi; \ \psi \rightarrow -\infty$$
 (2.10)

其中 $\delta^{-1/2} = \sqrt{k/g} \cdot c$ 是以 $\sqrt{g/k}$ 为特征速度时的无量纲速度。式(2.10)是无量纲化的底面边界条件。(2.8) \sim (2.10)式中的y及各项偏导是新的无量纲量。

为了求解方程(2.8)和(2.9),我们选取 ε 为一能够表征不同波浪物理特征的无量纲小参数,并假设问题的解具有如下摄动级数的形式:

$$y = \psi + \sum_{l=1}^{\infty} e^l y^{(l)}(x, \psi)$$
 (2.11)

将(2.11)代入方程(2.8)和(2.9)可得到描述摄动展开中各 l 阶波的 Laplace 方程:

$$y_{xx}^{(l)} + y_{yy}^{(l)} = -F^{(l)}$$
 (l=1,2,...) (2.12)

其中:

$$F^{(l)} = 2\sum_{k=1}^{l-1} (y_{xx}^{(l-k)} y_{\psi}^{(k)} - y_{x\psi}^{(l-k)} y_{x}^{(k)}) + \sum_{k=2}^{l-1} \sum_{j=1}^{k-1} (y_{xx}^{(l-k)} y_{\psi}^{(k-j)} y_{\psi}^{(j)})$$

(3,1)

$$-2y_{\psi}^{(k-j)}y_{x\psi}^{(l-k)}y_{x}^{(j)}+y_{\psi\psi}^{(l-k)}y_{x}^{(k-j)}y_{x}^{(j)}$$
(2.13)

和相应的边界条件:

$$\sum_{k=0}^{l} \left[y_x^{(k)} y_x^{(l-k)} + 2 \cdot \left(\sum_{j=0}^{k} y_y^{(j)} y_y^{(k-j)} \right) \cdot \left(\sum_{j=0}^{l-k} \delta^{(j)} y^{(l-k-j)} \right) \right.$$

$$-2K^{(l-k)}\sum_{j=0}^{k}y_{\psi}^{(j)}y_{\psi}^{(k-j)}\Big]=0; \ \psi=0$$
 (2.14)

其中 $\delta^{(l)}$ 和 $K^{(l)}$ 分别是 δ 和K的第l阶摄动展开系数,即

$$\delta = 1 + \sum_{l=1}^{\infty} \delta^{(l)} e^{(l)} \tag{2.15}$$

$$K = \frac{1}{2} + \sum_{i=1}^{\infty} K^{(i)} \varepsilon^{(i)}$$
 (2.16)

设 / 阶波的 Laplace 方程(2.12)的解具有如下形式:

$$y^{(l)} = \sum_{m=1}^{l} \exp(m\psi) \sum_{n=0}^{m} A_{m,n}^{(l)} \cos nx$$
 (2.17)

它显然满足无穷水深处的边界条件(2.10)和波浪运动所具有的水平方向的周期性条件。式中的 $A_{m,n}^{(l)}$ 为待定的无量纲系数。将(2.17)代入方程(2.12),令各n次谐波的系数相等,即可进一步确定 $A_{m,n}^{(l)}$,并通过选取小参数 ε 最后求得 $A_{m,n}^{(l)}$, $\delta^{(l)}$ 和 $K^{(l)}$ 。

三、两种新的数值计算方法及结果

方程(2.12)按(2.17)式展开后给出繁长的数学表达式,给直接计算带来许多困难。W. H. Hui(1982)用先进的 MAPLE 软件进行计算,得到了用有理分数表示的级数解。但由于计算机容量的限制,只给出了十一阶的结果,这对于研究非线性 Stokes 波在 趋于极限 波陡时的性态和分析 Stokes 级数 本身的收敛性是远远不够的。基于这一考虑,本文重新分析了控制方程和边界条件,给出了两种新的数值计算方法,使问题的解可以算到很高的阶数。

方法一: Fourier 级数法

将(2.17)式代入方程(2.12)有:

$$\sum_{q=1}^{l} \sum_{r=0}^{q} (q^{2}-r^{2}) A_{q,r}^{(l)} \exp(q\psi) \cos rx$$

$$= \sum_{k=1}^{l-1} \sum_{m=1}^{l-k} \sum_{s=1}^{k} \exp[(m+s)\psi] \cdot G(l, k, m, s)$$

$$+ \sum_{k=1}^{l-1} \sum_{j=1}^{k-1} \sum_{m=1}^{l-k} \sum_{s=1}^{j} \sum_{p=1}^{k-j} \exp[(m+s+p)\psi] \cdot H(l,k,j,m,s,p)$$

$$(l=1,2,\cdots)$$

其中:

$$G(l,k,m,s) = 2 \cdot \left(\sum_{n=0}^{m} mn A_{m,n}^{(l-k)} \sin nx \right) \left(\sum_{n=0}^{s} n A_{s,n}^{(k)} \sin nx \right)$$

$$+ 2 \cdot \left(\sum_{n=0}^{m} n^{2} A_{m,n}^{(l-k)} \cos nx \right) \left(\sum_{n=0}^{s} s A_{s,n}^{(k)} \cos nx \right)$$
(3.2)

$$H(l, k, j, m, s, p) =$$

$$\left(\sum_{n=0}^{m} n^{2} A_{m,n}^{(l-k)} \cos nx\right) \left(\sum_{n=0}^{s} s A_{s,n}^{(j)} \cos nx\right) \left(\sum_{n=0}^{p} p A_{p,n}^{(k-1)} \cos nx\right)$$

$$+2\Big(\sum_{n=0}^{m}mnA_{m,n}^{(l-k)}\sin nx\Big)\Big(\sum_{n=0}^{s}nA_{s,n}^{(j)}\sin nx\Big)\Big(\sum_{n=0}^{p}pA_{p,n}^{(k-j)}\cos nx\Big)$$

$$-\left(\sum_{n=0}^{m} m^{2} A_{m,n}^{(1-k)} \cos nx\right) \left(\sum_{n=0}^{s} n A_{s,n}^{(j)} \sin nx\right) \left(\sum_{n=0}^{p} n A_{p,n}^{(k-j)} \sin nx\right)$$
(3.3)

并规定, 当 $m \le 0$ 或 $s \le 0$ 时, $G(l, k, m, s) \equiv 0$

当 $m \le 0$ 或 $s \le 0$ 或 $p \le 0$ 时, H(l, k, j, m, s, p) = 0

对(3.1)式中右边项的 \sum 求和作适当换序,并令等式 两 边 $\exp(\psi)$ 的同次幂的系数相等有:

$$\sum_{r=0}^{q-1} (q^2 - r^2) A_{q,r}^{(l)} \cos rx = F^{(l,q)}(x) \qquad (l=1,2,\dots; q=1,2,\dots,l)$$
 (3.4)

其中:

$$F^{(l,q)}(x) = \sum_{k=1}^{l-1} \left[\sum_{j=l-k-q+1}^{l-q} G(l,k,l-k-j,q+k+j-l) + \sum_{j=k-2+q-l}^{k-2} G(l,k,q-j-2,j+2) \right] + \sum_{k=2}^{l-1} \sum_{j=1}^{k-1} \left\{ \sum_{s=l-q-k+1}^{l-q} H(l,k,j,l-k-s,j-t,q+k+s+t-l-j) + \sum_{t=k-j-2+q+s-l}^{k-j-2} H(l,k,j,l-k-s,q+k+s-l-t-2,t+2) \right] + \sum_{s=k-2+q-1}^{k-j} \left[\sum_{j=l-s-1}^{k-s-2} H(l,k,j,q-s-2,j-t,s+t-j+2) \right]$$

$$+\sum_{l=s-t}^{k-j-2} H(l,k,j,q-s-2,s-t,t+2) \bigg] \bigg\}$$
 (3.5)

本文中我们约定当k < 0或k > l时, $\sum_{k=0}^{l} \equiv 0$.

将(3.4)式的左边项看作是右边项 $F^{(l,q)}(x)$ 的 Fourier 级数展开,则根 据 Fourier 级 数理论有:

$$A_{q,r}^{(1)} = \frac{1}{q^2 - r^2} \cdot \frac{2}{\pi} \int_0^{\pi} F^{(1,q)}(x) \cos rx dx$$
 (3.6)

$$(l=1,2,\cdots, q=1,2,\cdots,l, r=1,2,\cdots,q-1)$$

$$A_{q,0}^{(1)} = \frac{1}{q^2 \pi} \int_0^{\pi} F^{(1,q)}(x) dx$$
 (3.7)

$$(l=1,2,\dots,q=1,2,\dots,l)$$

(3.6)和(3.7)式给出了所有 $A_{q,r}^{(l)}(l \ge q > r \ge 0)$ 的显式算式。

同理将(2.15), (2.16)和(2.17)代入边界条件(2.14)中,有:

$$K^{(l)} - \delta^{(l-1)} \cos x + \sum_{q=2}^{l} (m-1) A_{q,q}^{(l)} \cos qx = E^{(l)}(x)$$
 (3.8)

其中:

$$E^{(l)}(x) = \sum_{k=1}^{l-2} \delta^{(k)} y^{(l-k)} + \sum_{k=1}^{l-1} \left[\frac{1}{2} y_x^{(k)} y_x^{(l-k)} - \frac{1}{2} y_y^{(k)} y_y^{(l-k)} \right]$$

$$-k \sum_{n=0}^{k} A_{k+1,n}^{(l)} \cos nx - K^{(l-k)} \sum_{n=0}^{k} y_{\psi}^{(n)} y_{\psi}^{(k-n)}$$

$$+ \left(\sum_{n=0}^{k} y_{\psi}^{(n)} y_{\psi}^{(k-n)} \right) \left(\sum_{n=0}^{l-k} \delta^{(n)} y^{(l-k-n)} \right)$$
 (3.9)

式(3.8)给出。

$$A_{q,q}^{(l)} = \frac{1}{q-1} \cdot \frac{2}{\pi} \int_{0}^{\pi} E^{(l)}(x) \cos qx dx$$
 (3.10)

$$(l=2,3,\dots, q=2,3,\dots,l)$$

$$K^{(l)} = \frac{1}{\pi} \int_{0}^{\pi} E^{(l)}(x) dx, \qquad (l=1,2,\cdots)$$
 (3.11)

$$\delta^{(l-1)} = -\frac{2}{\pi} \int_0^{\pi} E^{(l)}(x) \cos x dx, \qquad (l=2,3,\cdots)$$
 (3.12)

可以 看出(3.5)式中只含有 $A_{q,r}^{(l)}$ ($l\geqslant q\geqslant r$)的低阶系数;而(3.9)式中则含有 $A_{q,r}^{(l)}$ ($l\geqslant q\geqslant r$)

r)的 同阶项和 $A_{q,q}^{(l)}$, $K^{(l)}$ 及 $\delta^{(l)}$ 的低阶项。因此,只要按一定的顺序进 行 计 算,式(3.6),(3.7)和(3.10)、(3.11),(3.12)可给出问题的解。另外,系数 $A_{1,1}^{(l)}$ 为任意常数,通过 对 摄动展开参数 ε 的选择可赋予 $A_{1,1}^{(l)}$ 为特定值。

方法二: 选加递推法

完整的递推公式可通过多重求和的换序而得到,但形式将是极其复杂与冗长。我们认为,将方程与边界条件按各次谐波的对应关系进行分解,进而给出多种形式的递推公式,然后再选加求和,同样可得到问题的解。推导过程如下。

将(2.17), (2.15)和(2.16)代入方程(2.12)和边界条件(2.14)中并整理得到: 控制方程:

$$\sum_{\lambda=1}^{l} \sum_{\mu=0}^{\lambda} (\lambda^{2} - \mu^{2}) A_{\lambda,\mu}^{(l)} \exp(\lambda \psi) \cdot \cos \mu x = P^{(l)} + Q^{(l)} \qquad (l=1,2,\cdots)$$
 (3.13)

其中:
$$P^{(l)} = \sum_{k=1}^{l-1} \sum_{m=1}^{l-k} \sum_{s=1}^{k} \exp[(m+s)\psi] \cdot G(l,k,m,s)$$
 (3.14)

$$Q^{(l)} = \sum_{k=1}^{l-1} \sum_{j=1}^{k-1} \sum_{m=1}^{l-k} \sum_{s=1}^{j} \sum_{p=1}^{k-j} \exp[(m+s+p)\psi] \cdot H(l,k,j,m,s,p)$$
(3.15)

式中G和H分别定义为:

$$G(l,k,m,s) = \sum_{n=0}^{m} \sum_{t=0}^{s} A_{m,n}^{(l-k)} A_{s,t}^{(k)} \cdot [n(sn+mt)\cos(n-t)x + n(sn-mt)\cos(n+t)x]$$
(3.16)

$$H(l,k,j,m,s,p) = \frac{1}{4} \sum_{n=0}^{m} \sum_{t=0}^{s} \sum_{q=0}^{p} A_{m,n}^{(l-k)} A_{s,t}^{(j)} A_{p,q}^{(k-j)} [(n^{2}sp + 2mnpt - m^{2}tq) \cdot \cos(n - t + q)x + (n^{2}sp - 2mnpt - m^{2}tq) \cdot \cos(n + t - q)x + (n^{2}sp + 2mnpt + m^{2}tq) \cdot \cos(n - t - q)x + (n^{2}sp - 2mnpt + m^{2}tq) \cdot \cos(n + t + q)x]$$

$$(3.17)$$

边界条件:

$$\sum_{\lambda=2}^{l} (1-\lambda) A_{\lambda,\lambda}^{(l)} \cos \lambda x = K^{(l)} + \sum_{\lambda=2}^{l} \sum_{\mu=0}^{\lambda-1} (\lambda-1) A_{\lambda,\mu}^{(l)} \cos \mu x$$

$$+\sum_{k=1}^{l-1} \left\{ 2K^{(l-k)} \sum_{m=1}^{k} \sum_{n=0}^{m} m A_{m,n}^{(k)} \cos nx - \delta^{(k)} \sum_{m=1}^{l-k} \sum_{n=0}^{m} A_{m,n}^{(l-k)} \cos nx + B_{1}(k) - B_{2}(k) + K^{(l-k)} B_{3}(k) - B_{4}(k) - B_{5}(k) \right\}$$
(3.18)

$$B_2(k) = \sum_{j=1}^{l-k-1} \sum_{m=1}^{k} \sum_{s=1}^{l-k-j} \delta^{(j)} m D_2(j,k,m,s)$$
 (3.20)

$$B_3(k) = \sum_{j=1}^{k-1} \sum_{m=1}^{j} \sum_{s=1}^{k-j} \frac{ms}{2} D_3(j,k,m,s)$$
 (3.21)

$$B_4(k) = \sum_{j=1}^{k-1} \sum_{m=1}^{j} \sum_{s=1}^{k-j} \sum_{p=1}^{l-k} \frac{ms}{4} D_4(j,k,m,s,p)$$
 (3.22)

$$B_{5}(k) = \sum_{j=1}^{k-1} \sum_{m=1}^{j} \sum_{s=1}^{k-j} \sum_{s=1}^{l-k-1} \sum_{q=1}^{l-k-1} \delta^{(p)} \frac{ms}{4} D_{5}(j,k,m,s,p,q)$$
(3.23)

(3.19)至(3.23)式中的 D_i 由下式给出。

$$D_1 = \sum_{n=0}^{m} \sum_{t=0}^{s} A_{m,n}^{(k)} A_{s,t}^{(t-k)} \left\{ \left[\frac{m}{2} \left(\frac{s}{2} - 2 \right) - \frac{1}{4} nt \right] \cos(n-t) x \right\}$$

$$+\left[\frac{m}{2}\binom{s}{2}-2\right]+\frac{1}{4}nt\left[\cos(n+t)x\right]$$
 (3.24)

$$D_2 = \sum_{n=0}^{m} \sum_{t=0}^{s} A_{m,n}^{(k)} A_{s,t}^{(t-k-j)} \left[\cos(n-t)x + \cos(n+t)x \right]$$
 (3.25)

$$D_{3} = \sum_{n=0}^{m} \sum_{t=0}^{s} A_{m,n}^{(f)} A_{s,t}^{(k-j)} [\cos(n-t)x + \cos(n+t)x]$$
 (3.26)

$$D_{4} = \sum_{n=0}^{m} \sum_{t=0}^{s} \sum_{q=0}^{p} A_{m,n}^{(j)} A_{s,t}^{(k-j)} A_{p,q}^{(l-k)} [\cos(n-t+q)x]$$

$$+\cos(n+t-q)x+\cos(n-t-q)x+\cos(n+t+q)x$$
 (3.27)

$$D_{5} = \sum_{n=0}^{m} \sum_{t=0}^{s} \sum_{r=0}^{q} A_{m,n}^{(j)} A_{s,t}^{(k-j)} A_{q,r}^{(l-k-2)} \left[\cos(n-t+r)x\right]$$

$$+\cos(n+t-r)x+\cos(n-t-r)x+\cos(n+t+r)x$$
 (3.28)

不难看出(3.13)式中等式两边各项都以 $\exp(\alpha\psi)\cdot\cos\beta x$ 的形式出现,且有 $l \ge \alpha \ge \beta \ge 0$,注意,当 $\alpha = \beta$ 时,等式两边的对应项自动消失,这意味着系数 $A_{a,a}^{(l)}$ 不能由控制 方程(3.13)求出,而必须求助于边界条件(3.18)。根据等式两边各次谐波的波幅对应关系,将(3.13)和(3.18)分解,并将等式左边 $A_{a,\beta}^{(l)}$ 的下标 α 与 β 按对应关系改成用右边项的下标表示,有:

してこく

控制方程:

$$l=1$$
: $A_{1,0}^{(1)}=0$ (3.29)

$$l=2: A_{2,|n-t|}^{(2)} = \frac{n(n+t)}{4-(n-t)^2} A_{1,n}^{(1)} A_{1,t}^{(1)} (n=0,1; t=0,1) (3.30)$$

$$A_{2,n+t}^{(2)} = \frac{n(n-t)}{4-(n+t)^2} A_{1,n}^{(1)} A_{1,t}^{(1)} \qquad (n=0,1; t=0,1; n+t<2) \quad (3.31)$$

$$\begin{cases}
A_{m+s, |n-t|}^{(l)} = \frac{(ns+mt)n}{(m+s)^2 - (n-t)^2} A_{m,n}^{(l-k)} A_{s,t}^{(k)} \\
A_{m+s, n+t}^{(l)} = \frac{(ns-mt)n}{(m+s)^2 - (n+t)^2} A_{m,n}^{(l-k)} A_{s,t}^{(k)}
\end{cases}$$
(3.32)

$$A_{m+s,n+t}^{(1)} = \frac{(ns-mt)n}{(m+s)^2 - (n+t)^2} A_{m,n}^{(1-k)} A_{s,t}^{(k)}$$
(3.33)

$$\binom{k=1,2,\cdots,l-1,\ m=1,2,\cdots,l-k,\ s=1,2,\cdots,k,}{n=0,1,\cdots,m,\ t=0,1,\cdots,s,\ m+s>n-t}$$

$$\begin{cases} A_{m+s+p, \lceil n-t+q \rceil}^{(t)} = \frac{1}{4} & \frac{n^2 s p + 2mn p t - m^2 t q}{(m+s+p)^2 - (n-t+q)^2} A_{m,n}^{(t-k)} A_{s,i}^{(j)} A_{p,q}^{(k-j)} & (3.34) \\ A_{m+s+p, \lceil n+t-q \rceil}^{(1)} = \frac{1}{4} & \frac{n^2 s p - 2mn p t - m^2 t q}{(m+s+p)^2 - (n+t-q)^2} A_{m,n}^{(t-k)} A_{s,i}^{(j)} A_{p,q}^{(k-j)} & (3.35) \\ A_{m+s+p, \lceil n-t-q \rceil}^{(t)} = \frac{1}{4} & \frac{n^2 s p + 2mn p t + m^2 t q}{(m+s+p)^2 - (n-t-q)^2} A_{m,n}^{(t-k)} A_{s,i}^{(j)} A_{p,q}^{(k-j)} & (3.36) \\ A_{m+s+p, n+t+q}^{(1)} = \frac{1}{4} & \frac{n^2 s p - 2mn p t + m^2 t q}{(m+s+p)^2 - (n+t+q)^2} A_{m,n}^{(t-k)} A_{s,i}^{(j)} A_{p,q}^{(k-j)} & (3.37) \end{cases}$$

$$A_{m+s+p,\lceil n+t-q\rceil}^{(1)} = \frac{1}{4} \frac{n^2 s p - 2mnpt - m^2 t q}{(m+s+p)^2 - (n+t-q)^2} A_{m,n}^{(1-k)} A_{s,t}^{(j)} A_{p,q}^{(k-j)}$$
(3.35)

$$A_{m+s+p,\lfloor n-t-q\rfloor}^{(t)} = \frac{1}{4} \frac{n^2 s p + 2mn p t + m^2 t q}{(m+s+p)^2 - (n-t-q)^2} A_{m,n}^{(t-k)} A_{s,t}^{(j)} A_{s,q}^{(k-j)}$$
(3.36)

$$A_{m+s+p,n+t+q}^{(t)} = \frac{1}{4} \frac{n^2 s p - 2mnpt + m^2 t q}{(m+s+p)^2 - (n+t+q)^2} A_{m,n}^{(t-k)} A_{s,t}^{(j)} A_{p,q}^{(k-j)}$$
(3.37)

$$\begin{pmatrix} k=1,2,\cdots,l-1; & j=1,2,\cdots,k-1; & m=1,2,\cdots,l-k; \\ s=1,2,\cdots,j; & p=1,2,\cdots,k-j; & n=0,1,\cdots,m; \\ t=0,1,\cdots,s; & q=0,1,\cdots,p; & m+s+p>n+t+q \end{pmatrix}$$

边界条件:

$$l=1$$
: $K^{(1)}=0$; $\delta^{(0)}=1$ (3.38)

$$l=2; K^{(2)} = \delta^{(1)} A_{1,0}^{(1)} - 2K^{(1)} A_{1,0}^{(1)} - A_{2,0}^{(2)} - B^{(0)}(1)$$
(3.39)

$$\delta^{(1)} = 2K^{(1)}A_{1,1}^{(1)} \tag{3.40}$$

$$A_{2,2}^{(2)} = -A_{1,1}^{(1)} A_{1,1}^{(1)} \left[\frac{m}{2} \left(\frac{s}{2} - 2 \right) + \frac{1}{4} nt \right]$$
 (3.41)

 $l = 3, 4, \cdots$

$$K^{(l)} = \sum_{k=1}^{l-1} \left[\delta^{(k)} \sum_{m=1}^{l-k} A_{m,0}^{(l-k)} - 2K^{(l-k)} \sum_{m=1}^{k} m A_{m,0}^{(k)} - k A_{k+1,0}^{(l)} - B^{(0)}(k) \right]$$
(3.42)

$$\delta^{(l-1)} = \sum_{k=1}^{l-1} \left[2K^{(l-k)} \sum_{m=1}^{k} m A_{m,1}^{(k)} + k A_{k+1,1}^{(l)} + B^{(1)}(k) \right] - \sum_{k=1}^{l-1} \delta^{(k-1)} \sum_{m=1}^{l-k+1} A_{m,1}^{(l-k+1)}$$
(3.43)

其中 $B^{(1)}(k)$ 定义为:

$$B^{(i)}(k) = B_1^{(i)}(k) - B_2^{(i)}(k) + K^{(i-k)}B_3^{(i)}(k)$$

$$-B_2^{(i)}(k) - B_2^{(i)}(k) \qquad (i = 0, 1) \qquad (3, 44)$$

式中的 $B_i^{(t)}(k)$, j=1,2,3,4,5为(3.19)~(3.23)中 $B_i(k)$ 的第:次谐波波幅。

对角线上的系数 $A_{a,a}^{(l)}$ 为:

$$A_{n,n}^{(l)} = \frac{k+1}{1-n} A_{k+2,n}^{(l)}; \quad (k=1,2,\cdots,l-2; n=2,3,\cdots,k+1)$$
 (3.45)

$$A_{n,n}^{(t)} = \frac{2K^{(1-k-1)}m}{n-1} A_{m,n}^{(k+1)}; \begin{pmatrix} k=1,2,\cdots,l-2\\ m=2,3,\cdots,k+1\\ n=2,3,\cdots,m \end{pmatrix}$$
(3.46)

$$A_{n,n}^{(1)} = \frac{\delta^{(k)}}{n-1} A_{m,n}^{(1-k)}; \begin{pmatrix} k=1,2,\dots,l-2\\ m=2,3,\dots,l-k\\ n=2,3,\dots,m \end{pmatrix}$$
(3.47)

$$\begin{cases}
A_{\lfloor n-t\rfloor, \lfloor n-t\rfloor}^{(t)} = \frac{2}{2} \frac{\left(\frac{s}{2} - 2\right) - \frac{1}{4} nt}{1 - |n-t|} A_{m,n}^{(k)} A_{s,t}^{(l-k)} \\
A_{n+i,n+t}^{(t)} = \frac{2}{2} \frac{\left(\frac{s}{2} - 2\right) + \frac{1}{4} nt}{1 - n - t} A_{m,n}^{(k)} A_{s,t}^{(l-k)}
\end{cases}$$
(3.48)

$$A_{n+t,n+t}^{(t)} = \frac{\frac{m}{2} \left(\frac{s}{2} - 2\right) + \frac{1}{4} nt}{1 - n - t} A_{m,n}^{(k)} A_{s,t}^{(t-k)}$$
(3.49)

$$\binom{k=1,2,\cdots,l-1,\ m=1,2,\cdots,k,\ s=1,2,\cdots,l-k,}{n=0,1,\cdots,m,\ t=0,1,\cdots,s}$$

$$\begin{cases}
A_{\lfloor n-t\rfloor, \lfloor n-t\rfloor}^{(l)} = \frac{\delta^{(j)}m}{|n-t|-1} A_{m,n}^{(k)} A_{s,t}^{(l-k-j)} \\
A_{n+t,n+t}^{(l)} = \frac{\delta^{(j)}m}{n+t-1} A_{m,n}^{(k)} A_{s,t}^{(l-k-j)}
\end{cases}$$
(3.50)

$$A_{n+t,n+t}^{(1)} = \frac{\delta^{(j)}m}{n+t-1} A_{m,n}^{(k)} A_{s,t}^{(1-k-j)}$$
(3.51)

$${\binom{k=1,2,\cdots,l-1,\ j=1,2,\cdots,l-k-1,\ m=1,2,\cdots,k}{s=1,2,\cdots,l-k-j,\ n=0,1,\cdots,m,\ t=0,1,\cdots,s}}$$

$$\begin{cases}
A_{\{n-t\},\{n-t\}}^{(l)} = \frac{1}{2} \frac{msK^{(l-k)}}{1-|n-t|} & A_{m,n}^{(f)} A_{s,t}^{(k-f)} \\
A_{n+t,n+t}^{(l)} = \frac{1}{2} \frac{msK^{(l-k)}}{1-n-t} & A_{m,n}^{(f)} A_{s,t}^{(k-f)}
\end{cases}$$
(3.52)

$$A_{n+i,n+i}^{(l)} = \frac{1}{2} \frac{msK^{(l-k)}}{1-n-t} A_{m,n}^{(j)} A_{s,i}^{(k-j)}$$
(3.53)

$$\begin{cases}
A_{\lfloor n-t+q\rfloor, \lfloor n-t+q\rfloor}^{(1)} = \frac{-\frac{1}{4}ms}{1-\lfloor n-t+q\rfloor} - A_{m,n}^{(j)} A_{s,t}^{(k-j)} A_{p,q}^{(i-k)} \\
A_{\lfloor n+t-q\rfloor, \lfloor n+t-q\rfloor}^{(1)} = \frac{-\frac{1}{4}ms}{1-\lfloor n+t-q\rfloor} - A_{m,n}^{(j)} A_{s,t}^{(k-j)} A_{p,q}^{(i-k)} \\
A_{\lfloor n-t-q\rfloor, \lfloor n-t-q\rfloor}^{(1)} = \frac{-\frac{1}{4}ms}{1-\lfloor n-t-q\rfloor} A_{m,n}^{(j)} A_{s,t}^{(k-j)} A_{p,q}^{(i-k)} \\
A_{n+t+q,n+t+q}^{(1)} = \frac{-\frac{1}{4}ms}{1-n-t-q} A_{m,n}^{(j)} A_{s,t}^{(k-j)} A_{p,q}^{(i-k)} \\
A_{n+t+q,n+t+q}^{(1)} = \frac{-\frac{1}{4}ms}{1-n-t-q} A_{m,n}^{(j)} A_{s,t}^{(k-j)} A_{p,q}^{(i-k)}
\end{cases} (3.54)$$

$$A_{\lfloor n+t-q\rfloor, \lfloor n+t-q\rfloor}^{(t)} = \frac{-\frac{1}{4}ms}{1-\lfloor n+t-q\rfloor} A_{m,n}^{(j)} A_{s,t}^{(k-j)} A_{p,q}^{(t-k)}$$
(3.55)

$$A_{\lfloor n-t-q\rfloor, \lfloor n-t-q\rfloor}^{(1)} = \frac{-\frac{1}{4}ms}{1-\lfloor n-t-q\rfloor} A_{m,n}^{(j)} A_{s,t}^{(k-j)} A_{p,q}^{(1-k)}$$
(3.56)

$$A_{n+t+q,n+t+q}^{(t)} = \frac{-\frac{1}{4}ms}{1-n-t-q} A_{m,n}^{(j)} A_{s,t}^{(k-j)} A_{p,q}^{(t-k)}$$
(3.57)

$$A_{1n-t+r|, 1n-t+r|}^{(t)} = \frac{\frac{1}{4} ms \delta^{(p)}}{|n-t+r|-1} A_{m,n}^{(j)} A_{s,t}^{(k-j)} A_{q,r}^{(l-k-p)}$$
(3.58)

$$\begin{cases}
A_{1n-t+r|, \lceil n-t+r \rceil}^{(1)} = \frac{1}{4} \frac{ms\delta^{(p)}}{|n-t+r|-1} - A_{m,n}^{(j)} A_{s,t}^{(k-j)} A_{q,r}^{(l-k-p)} \\
A_{1n+t-r|, \lceil n+t-r \rceil}^{(1)} = \frac{1}{|n+t-r|-1} \frac{ms\delta^{(p)}}{|n+t-r|-1} - A_{m,n}^{(j)} A_{s,t}^{(k-j)} A_{q,r}^{(l-k-p)} \\
A_{1n-t-r|, \lceil n-t-r \rceil}^{(l)} = \frac{1}{|n-t-r|-1} \frac{ms\delta^{(p)}}{|n-t-r|-1} - A_{m,n}^{(j)} A_{s,t}^{(k-j)} A_{q,r}^{(l-k-p)} \\
A_{n+t+r,n+t+r}^{(l)} = \frac{1}{n+t+r-1} \frac{ms\delta^{(p)}}{n+t+r-1} A_{m,n}^{(j)} A_{s,t}^{(k-j)} A_{q,r}^{(l-k-p)} \\
A_{m,n}^{(l)} A_{s,t}^{(l-k-p)} A_{q,r}^{(l-k-p)}
\end{cases} (3.58)$$

$$A_{\lfloor n-t-r\rfloor, \lfloor n-t-r\rfloor}^{(l)} = \frac{1}{4} ms \delta^{(r)} A_{m,n}^{(l)} A_{s,i}^{(k-j)} A_{q,r}^{(t-k-r)}$$
(3.60)

$$A_{n+t+r,n+t+r}^{(1)} = \frac{1}{n+t+r-1} M_{m,n}^{(\delta)} A_{s,t}^{(k-j)} A_{q,r}^{(t-k-p)}$$
(3.61)

$$\begin{pmatrix}
k=2,3,\dots,l-1; & j=1,2,\dots,k-1; & m=1,2,\dots,k-1; \\
s=1,2,\dots,k-j; & p=1,2,\dots,l-k-1; & q=1,2,\dots,l-k-p; \\
n=0,1,\dots,m; & t=0,1,\dots,s; & r=0,1,\dots,q
\end{pmatrix}$$

在(3.48)~(3.61) 式中,下标 n+t, |n-t|, |n-t+q|, |n+t-q|, |n-t-q|和 n+t+q 均大于1. 对于给定的(l, α , β), $A_{a,\beta}^{(l)}$ 可能出现在(3.48)~(3.61)的各式中, 在同一式 中也可能出现若干次。计算时应将给定1后的所有可能的情况进行选加求和, 其 结 果 给 出 $A_{a,b}^{(1)}$ 。此项工作将由计算机自动完成。类似方法一, $A_{a,b}^{(1)}$ 的选取可使摄动展开系数 ϵ 具有特 定的物理意义。

计算结果:

为了比较、我们选取e为自由面方程中富氏展开的第一个系数 a_i ,即选取 $A_{i,1}^{(1)}$ 为:

$$A_{1,1}^{(1)} = 1, A_{1,1}^{(2l)} = 0 (3.62)$$

(4.2)

$$A_{1,1}^{(2l+1)} = -\sum_{i=1}^{l} A_{2i+1,1}^{(2l+1)}$$
(3.63)

并用方法一和方法二分别进行了计算。

同样,我们可赋予 ε 其它物理意义,如 $\varepsilon=h$,h为半波高,相应地 $A_{1,1}^{(1)}$ 也随之改变。

限于篇幅,表1至14只给出了方法二的结果,计算时间约为20分钟。实际上可算到几十阶至上百阶而不存在计算机容量的限制问题。从前十一阶的结果来看,与W. H. Hui 的计算是完全一致的。值得一提的是方法二的结果中,除了计算机的截断误差外,不存在数值计算的任何近似问题。另外,我们用 Simpson 积分公式对方法一进行了计算,得到了五位有效数字的计算结果,并与方法二的结果的前五位数完全一致。更多位的有效数字可通过提高积分精度而获得,但计算时间也会相应地增加。

Bernoulli 常数K和色散点关系式 δ 分别为。

$$K = 0.5 + 0.5\varepsilon^{2} - 0.625\varepsilon^{4} + 0.29948\varepsilon^{6} - 0.61382\varepsilon^{8}$$

$$-0.92602\varepsilon^{10} - 4.58237\varepsilon^{12} - 19.2758\varepsilon^{14}$$

$$\delta = 1 - \varepsilon^{2} - 0.25\varepsilon^{4} - 2.68229\varepsilon^{6} - 10.98937\varepsilon^{8}$$
(3.64)

$$-57.65763\varepsilon^{10} - 321.2485\varepsilon^{12} - 1890.6207\varepsilon^{14}$$
 (3.65)

四、应用与讨论

E. D. Cokelet(1977)用一新的摄动小参数[6]:

$$\Delta^2 = 1 - \frac{q_c^2 \cdot q_i^2}{c^4} \tag{4.1}$$

计算了Stokes 波的相速度,半波高和波面方程等物理量 $^{(2)}$ 。上式中 c 为相速度, c 0和 c 4分别为在以速度 c 6 随波浪一起运动的坐标系里波峰和波谷上的流体质点速度。Cokelet 给出的结果是:

$$c^2 = 1 + 1.66667 \times 10^{-1} \triangle^2 + 5.24691 \times 10^{-2} \triangle^4 + 1.71496 \times 10^{-2} \triangle^6 + 3.40850 \times 10^{-3} \triangle^8 - 2.32940 \times 10^{-3} \triangle^{10}$$

 $h=4.08248\times10^{-1} \triangle +4.72510\times10^{-2} \triangle^3 +8.97681\times10^{-3} \triangle^5$

$$-2.50178 \times 10^{-4} \Delta^{7} - 2.83082 \times 10^{-3} \Delta^{9}$$
 (4.3)

$$q^2 = \frac{1}{y_A^2} (1 + y_x)^2 \tag{4.4}$$

于是波峰和波谷的速度平方分别为:

$$q_{\epsilon}^{2} = \frac{1}{y_{\phi}^{2}} \Big|_{\substack{v=0\\ x=0}}^{v=0} \tag{4.5}$$

$$q_{i}^{2} = \frac{1}{y_{\mu}^{2}} \begin{vmatrix} y_{i} & 0 \\ y_{i} & 0 \\ y_{i} & 0 \end{vmatrix}$$
 (4.6)

将(4.5)和(4.6)代入(4.1)并考虑到 y_{ϕ} 的形式由(2.11)和(2.17)式给出,有:

$$\sum_{l=1}^{\infty} \left(\frac{(2l-1)!!}{(2l)!!} \Delta^{2l} - \delta_{2l} \cdot \varepsilon^{2l} \right) = 0$$
 (4.7)

其中:

$$\delta_{2l} = \alpha_{2l} + \sum_{k=1}^{2l-1} \beta_{2l-k} \cdot \gamma_k \qquad (l=1,2,\cdots)$$
 (4.8)

 α_i , β_i 和 γ_i 定义为:

$$a_{2l} = 4 \sum_{m=1}^{l} m \sum_{n=0}^{m} A_{2m,2m}^{(2l)} \qquad (l=1,2,\cdots)$$
 (4.9)

$$a_{2l-1}=0$$
 $(l=1,2,\cdots)$ (4.10)

$$\beta_{l} = \sum_{m=1}^{l} m \sum_{n=0}^{m} A_{m,n}^{(l)}$$
(4.11)

$$\gamma_{l} = \sum_{m=1}^{l} m \sum_{n=0}^{m} (-1)^{n} A_{m,n}^{(l)}$$
(4.12)

设:
$$\varepsilon = a_1 \triangle + a_3 \triangle^3 + \dots = \sum_{l=0}^{\infty} a_{2l+1} \triangle^{2l+1}$$
 (4.13)

将(4.13)代入(4.7)并令 Δ^{2i} 的系数为零即可解出 a_{2i+1} (见表15)。

上节的计算结果给出的无量纲速度 $\delta^{-1/2}$ 和半波高h为。

$$\delta^{-1/2} = 1 + \varepsilon^2 + 1.25\varepsilon^4 + 4.18229\varepsilon^6 + 22.3487\varepsilon^8 + 91.0244\varepsilon^{10} + \cdots$$
 (4.14)

$$h = \varepsilon + 0.375\varepsilon^3 + 1.52083\varepsilon^5 + 6.7443\varepsilon^7 + 35.02449\varepsilon^9 + \cdots$$
 (4.15)

将(4.13)代入(4.14)和(4.15)式便重新得到了E. D. Cokelet 的结果(4.2)和(4.3)、对(4.3)式进行反演有:

$$\Delta = 2.44949h - 1.70103h^3 + 1.60483h^5 + 1.25245h^7 + 7.33765h^9$$
 (4.16)
再对上式作Padé近似^[7]。

$$[7,2] \triangle = \frac{-3.06786h - 20.10395h^3 - 14.49156h^5 + 10.20706h^7}{-1.25245 + 7.33765h^2}$$
(4.17)

可以看出(4.17)的零点 $h_0=0.4131$ 与半波高的最大值 $h_{max}=0.44$ 非常接近。根据Padé近似理论可以预料 h_0 将随着(4.16)式中更高阶项的出现而趋于 h_{max} ,它说明相速度 c 及 其它物理量在大波陡时收敛性不好的原因是由于在 $h=h_{max}$ 处存在着一个平方根奇点的缘 故,这一定性的分析与 Schwartz(1974)的结论是一致的。所以,适当选择小参数 ε 可以 使级数的收敛性有所改善。

表 1	$A_{m,n}^{(2)}$	
m n	0	2
2	0.5	0.5

表 2 ————		$A_{m,n}^{(3)}$	
m	n	1	3
1		-1.125	
3		1.125	0.375

表3		$A_{m,n}^{(4)}$	-
m n	0	2	4
2	-1.125	-0.625	
4	1.0	1.33333	0.33333

表 4			
n m	1	3	5
1	-0.20833		
3	-3.04687	-0.4322 9	
5	3.25521	1.62760	0.32562

表 5	·	$A_{m,\pi}^{(6)}$		
m n	0	2	4	6
2	0.42448	0.59116		
4	-3.5	-3.83333	-0.31944	
6	3.375	5.0625	2.025	0.3375

表 6		$A_{m,n}^{(7)}$		
m n	1	3	5	7
1	-2.89855			
3	2.97461	1.09223	_	_
5	-12.8418	-4.69347	-0.23175	
7	12.76573	7.65944	2.55315	0.36474

表 7		A			
m n	0	2	4	6	8
2	-2.66417	0.00076			-
4	5.09375	5.98611	1.61505		•
6	-15.6563	-21.17187	-5.6 6 25	-0.146597	
8	14.2222	22.75556	11.3778	3.250 79	0.40635

表	8				$A_{m,n}^{(9)}$		
m		n :	1	3	5	7	9
	1		-11.74215		1		
1	3		-6.24247	1.88642			
	5		24.59825	10.25276	2.26005		 -
	7		-64.99948	-32.80876	-6.75553	-0.04981	
	9		58.38585	38.92390	16.68167	4.17042	0.48338

-	•
75	- 94

 $A_{m_{\mathfrak{p}^n}}^{(10)}$

m m	0	2	4	6	8	10
2	-8.45959	3.04587		1.2		
4	-8.88151	-6.4 08 9 7	3.96 383			
6	33.457 6 8	49.78757	16.37221	3.10231		
8	-81.62963	-122.4074	-48.82	-7.97108	0.071141	
10	67.81684	113.0281	64.58747	24.2203	5.38229	0.53823

表 10

 $A_{m,n}^{(11)}$

m n	1	3	5	τ	8	11
1	-61.8409			:		
3	-7.82722	13.96633	1			
5	-38.19584	-4.99 253	6.69120			
7	176.7610	91.26066	25.20936	4.22587		
8	-362.0628	-215 .9 438	-70.5 6 852	-9.28611	0.23014	
11	293.1657	209.4041	104.7020	34.90068	6.98014	0.53458

表 11

 $A_{m,n}^{(12)}$

	n		[1	
m	:	0	2	4	6	8	10	12
2		-48.02708	1 6 74185					
4	į.	-0.47401	14.5875	26.93898				
6	:	-82.04988	-71.21398	-0.39541	10.47889			
8	:	252.5424	377.6416	157.3684	38.00483	5.73834		!
10		-462.6827	-737.4934	-363.4857	- 99.7647	-10.6452	0.44436	
12		349.920	599.8629	374.9143	166.6286	49.98857	9.08883	0.75740

表12

 $A_{m,n}^{(13)}$

m	i	3	5	7	9	11	13
1	-344.8592						
3	-60.64186	77.52328					!
5	45.85828	58.73783	44.70338				! !
7	-317.3642	-119.9722	10.02831	15.83424			
9	1247.2074	741.6020	260.6692	50.53 799	7.7831 9		
11	-2137.663	-1412.04	-590.497	-138.5162	-11.9431	0.736189	
13	1567.4628	1175.5971	653.1095	261.2438	71.2483	11.8747	0.91344

表13

 $A_{m,n}^{(14)}$

m n	0	2	4	6	8	10	12	14
2	-268.0411	107.0740		i				
4	-49. 0325	39.1446	152.5719		1			
6	97.90104	174.2593	139.4679	76.08006				
8	-509.4228	-702.6925	-185. 9 282	30.54604	23.44438			
10	1755.601	2781.126	1372.671	419.95198	83.36021	10.554296		,
12	-27 6 2.8 9 2	-4584.258	-2578.991	-932.8535	-189.3631	-12.99827	1.135412	
14	1907.144	3337.502	2225.001	1112.5006	404.5457	101.11354	15.55945	1.111389

表14

 $A_{m_{jn}}^{(15)}$

m n	1	3	5	7	9	11	13	15
1	-2031.2936	!			 -	†		
3	-314.4032	471.1002						
5	-37.110866	2 49. 138 6	258.5 64 2				<u> </u>	
7	65 0.1 9 28	459.9 773	280.7 69 8	106.777				
9	-2722.481	-1408.248	-266.409	67.93426	34.26383	.!		
11	8808.268	5757.887	2 433.26 0	663.2264	122.1269	14.31494	}	
13	-13121.29	- 9 285.177	-4538.272	-1440.589	-255.27 9 8	-13.51382	1.68209	
15	87 6 8.123	6819.651	4091.791	1859.905	619.9683	143.0696	20.43852	1.36257

表15

n	β _n	Υn	a_n	δ_n	an
1	1	-1	0	0	1/56
2	2	2	4	3	0
3	27/8	-27/8	0	0	$\frac{23}{2592} \sim 6$
4	43/6	43/6	43/3	139/12	0
5	739/48	-739/48	0	0	-1.2345×10 ⁻²
6	52157/1440	52157/1440	52157/720	169703/2880	0
7	8.3868×10 ¹	-8.3868×10^{1}	0	0	-1.5491×10^{-2}
8	2.0573×10 ²	2.0573×10 ²	4.1146×10^{2}	3.3605×10 ²	0
9	4.9608×10 ²	4.9608×10 ²	0	0	-1.3349×10 ⁻²
10			2.4957×10 ³	2.0425×10 ³	0

参考文献

- [1] 李家春, 深水波理论的新进展, 力学进展, 16, 2 (1986), 175-184.
- [2] Schwartz, L. W., Computer extension and analytic continuation of Stokes' expansion for gravity waves, J. Fluid Mech., 62 (1974), 553-578.
- [3] Cokelet, E. D., Steep gravity waves in water of arbitrary uniform depth, Phil. Trans. Roy. Soc., A286 (1977), 183-230.
- [4] Hui, W. H., A new approach to steady flows with free surfaces, J. of Appl. Math. and Phy. (Z. A. M. P) 33, September (1982), 569-589.
- [5] Dubreil-Jacotin, M. L., Sur la détermination rigoureuse des ondes permanantes périodiques d'ampleur finie, J. Math. Pures et Appl., 13 (1934).
- [6] Longuet-Higgins, M. S., Integral properties of periodic gravity waves of finite amplitude, Proc. Roy. Soc. Lond., A342 (1975), 157-174.
- [7] 李家春,摄动级数收敛性的改进及其应用,《摄动法及其在力学中的应用》(钱伟长主编),科学出版社(1981),263-309。

Numerical Calculation For The Coefficients of Stokes Harmonic Waves of High Order

Song Tao Li Jia-chun

(Institute of Mechanics, Chinese Academy of Sciences, Beijing)

Abstract

This paper has reformulated the mathematical model and boundary conditions in the semi-physical plane (x,ψ) by using W. H. Hui's method and suggested two new ways of numerical calculation for the coefficients of Stokes harmonic waves of high order. By transforming the perturbation parameter into a new one, we refind Cokelet's results (1977) of phase speed and semi-wavehight expressions.