留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单向拉伸镍钛合金带从奥氏体到马氏体的相变分析

谢宇新 张义同 徐家福

谢宇新, 张义同, 徐家福. 单向拉伸镍钛合金带从奥氏体到马氏体的相变分析[J]. 应用数学和力学, 2007, 28(12): 1475-1482.
引用本文: 谢宇新, 张义同, 徐家福. 单向拉伸镍钛合金带从奥氏体到马氏体的相变分析[J]. 应用数学和力学, 2007, 28(12): 1475-1482.
XIE Yu-xin, ZHANG Yi-tong, XU Jia-fu. Analysis of Phase Transformation From Austenite to Martensite in NiTi Alloy Strips Under Uniaxial Tension[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1475-1482.
Citation: XIE Yu-xin, ZHANG Yi-tong, XU Jia-fu. Analysis of Phase Transformation From Austenite to Martensite in NiTi Alloy Strips Under Uniaxial Tension[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1475-1482.

单向拉伸镍钛合金带从奥氏体到马氏体的相变分析

基金项目: 国家自然科学基金资助项目(10272079);国家自然科学基金委员会与英国皇家学会联合资助项目
详细信息
    作者简介:

    谢宇新(1974- ),讲师(E-mail:xyx@tju.edu.cn);张义同,教授(联系人.Tel:+86-22-87891425;E-mail:ytzhang@tju.edu.cn).

  • 中图分类号: O343.5

Analysis of Phase Transformation From Austenite to Martensite in NiTi Alloy Strips Under Uniaxial Tension

  • 摘要: 单向拉伸镍钛合金带中从奥氏体到马氏体的相变已在实验中观测到,并被看作为局部变形进行了数值模拟.该文采用相变理论对其进行分析,考虑了两相界面处变形梯度的跳跃以及Maxwell关系,导出了相变的控制方程.相变分析归结为寻求载荷的最小值,使在该值下控制方程具有唯一的、物理上可以接受的实数解.控制方程被数值求解,证明了该唯一解确实存在.相变的Maxwell 应力,马氏体相与奥氏体相内的应力与应变,以及相边界的倾角都可求出,并与实验所观测到的结果相吻合.
  • [1] Shaw J A. Kyriakides S. Thermomechanical aspects of NiTi[J].J Mech Phys Solids,1995,43(8):1243-1281. doi: 10.1016/0022-5096(95)00024-D
    [2] Shaw J A. Kyriakides S. On the nucleation and propagation of phase transformation fronts in a NiTi alloy[J].Acta Materialia,1997,45(2):683-700. doi: 10.1016/S1359-6454(96)00189-9
    [3] Shaw J A. Kyriakides S.Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension[J].Internat J Plasticity,1998,13(10):837-871.
    [4] Gurtin M E.Configurational Forces as Basic Concepts of Continuum Physics[M].New York: Springer,2000.
    [5] Fu Y B, Ogden R W.Nonlinear Elasticity: Theory and Applications[M].Cambridge, UK:Cambridge University Press, 2001.
    [6] Fu Y B, Freidin A B.Characterization and stability of two-phase piecewise-homogeneous deformations[J].Proc Roy Soc Lond A,2004,460(10):3065-3094. doi: 10.1098/rspa.2004.1361
    [7] 黄克智,黄永刚.固体本构关系[M].北京:清华大学出版社,1999.
    [8] Rice J R. Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity[J].J Mech Phys Solids,1971,19(6):433-455. doi: 10.1016/0022-5096(71)90010-X
    [9] Rice J R.Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanics[A].In:Argon A S, Ed.Constitutive Equations in Plasticity[C].New York: MIT Press, 1975, 23-79.
    [10] Hill R,Rice J R.Constitutive analysis of elastoplastic crystals at arbitrary strain[J].J Mech Phys Solids,1972,20(6):401-413. doi: 10.1016/0022-5096(72)90017-8
    [11] Hill R, Rice J R. Elastic potential and the structure of inelastic constitutive laws[J].SIAM J Appl Math,1973,25(3):448-461. doi: 10.1137/0125045
  • 加载中
计量
  • 文章访问数:  3088
  • HTML全文浏览量:  131
  • PDF下载量:  588
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-03-23
  • 修回日期:  2007-09-12
  • 刊出日期:  2007-12-15

目录

    /

    返回文章
    返回