留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解结构型单调变分不等式的改进的邻近类分解方法

李敏 袁晓明

李敏, 袁晓明. 求解结构型单调变分不等式的改进的邻近类分解方法[J]. 应用数学和力学, 2007, 28(12): 1483-1492.
引用本文: 李敏, 袁晓明. 求解结构型单调变分不等式的改进的邻近类分解方法[J]. 应用数学和力学, 2007, 28(12): 1483-1492.
LI Min, YUAN Xiao-ming. Improved Proximal-Based Decomposition Method for Structured Monotone Variational Inequalities[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1483-1492.
Citation: LI Min, YUAN Xiao-ming. Improved Proximal-Based Decomposition Method for Structured Monotone Variational Inequalities[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1483-1492.

求解结构型单调变分不等式的改进的邻近类分解方法

基金项目: 国家自然科学基金资助项目(70671024);国家高新技术发展(863)计划(2006AA11Z209)
详细信息
    作者简介:

    李敏(1980- ),女,江苏徐州人,博士;袁晓明,博士(联系人.Tel:+86-21-52301397;E-mail:xmyuan@sjtu.edu.cn).

  • 中图分类号: O221;O224

Improved Proximal-Based Decomposition Method for Structured Monotone Variational Inequalities

  • 摘要: 邻近类分解方法首先是由Chen和Teboulle(Math. Programming,1994,64(1):81-101)提出用来求解凸的极小化问题.在此基础上,该文提出一种新方法求解具有分离结构的单调变分不等式.其主要优点在于放松了算法中对某些参数的限制,使得新方法更加便于计算.在和原分解方法相同的假设下,可以证明新方法是全局收敛的.
  • [1] Chen G, Teboulle M. A proximal-based decomposition method for convex minimization problems[J].Mathematical Programming,1994,64(1):81-101. doi: 10.1007/BF01582566
    [2] Bertsekas D P, Gafni E M. Projection method for variational inequalities with applications to the traffic assignment problem[J].Mathematical Programming Study,1982,17:139-159. doi: 10.1007/BFb0120965
    [3] Dafermos S. Traffic equilibrium and variational inequalities[J].Transportation Science,1980,14(1):42-54. doi: 10.1287/trsc.14.1.42
    [4] Eckstein J, Fukushima M.Some reformulation and applications of the alternating directions method of multipliers[A].In:Hager W W, Hearn D W, Pardalos P M,Eds.Large Scale Optimization: State of the Art[C].Amsterdam, Holland:Kluwer Academic Publishers,1994, 115-134.
    [5] Fukushima M. Application of the alternating directions method of multipliers to separable convex programming problems[J].Computational Optimization and Applications,1992,1(1):93-111. doi: 10.1007/BF00247655
    [6] Nagurney A, Ramanujam P.Transportation network policy modeling with goal targets and generalized penalty functions[J].Transportation Science,1996,30(1):3-13. doi: 10.1287/trsc.30.1.3
    [7] Glowinski R, Tallec P L.Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics[M].SIAM Studies in Applied Mathematics.Philadelphia, PA:SIAM,1989.
    [8] Rockafellar R T.Convex Analysis[M].Princeton, NJ:Princeton University Press,1970.
    [9] Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J].Computers and Mathematics With Applications,1976,2(1):17-40. doi: 10.1016/0898-1221(76)90003-1
    [10] He B S, Yang H, Wang S L. Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities[J].Journal of Optimization Theory and Applications,2000,106(2):337-356. doi: 10.1023/A:1004603514434
    [11] He B S, Liao L-Z, Han D R,et al.A new inexact alternating directions method for monotone variational inequalities[J].Mathematical Programming,2002,92(1):103-118. doi: 10.1007/s101070100280
    [12] Tseng P. Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[J].SIAM Journal on Control and Optimization,1991,29(1):119-138. doi: 10.1137/0329006
    [13] Tseng P. Alternating projection-proximal methods for convex programming and variational inequalities[J].SIAM Journal on Optimization,1997,7(4):951-965. doi: 10.1137/S1052623495279797
    [14] He B S, Liao L-Z,Yang Z H. A new approximate proximal point algorithm for maximal monotone operator[J].Science in China,Ser A,2003,46(2):200-206. doi: 10.1360/03ys9021
    [15] Kyono M, Fukushima M. Nonlinear proximal decomposition method for convex programming[J].Journal of Optimization Theory and Applications,2000,106(2): 357-372. doi: 10.1023/A:1004655531273
    [16] Auslender A, Teboulle M. Entropic proximal decomposition methods for convex programs and variational inequalities[J].Mathematical Programming,2001,91(1):33-47.
    [17] Kontogiorgis S,Meyer R R. A variable-penalty alternating directions method for convex optimization[J].Mathematical Programming,1998,83(1):29-53.
    [18] Solodov M V, Svaiter B F. A unified framework for some inexact proximal point algorithms[J].Numerical Functional Analysis and Optimization,2001,22(7/8):1013-1035. doi: 10.1081/NFA-100108320
  • 加载中
计量
  • 文章访问数:  2721
  • HTML全文浏览量:  80
  • PDF下载量:  628
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-05-22
  • 修回日期:  2007-09-14
  • 刊出日期:  2007-12-15

目录

    /

    返回文章
    返回