留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大密度比和大压力比可压缩流的数值计算

陈荣三

陈荣三. 大密度比和大压力比可压缩流的数值计算[J]. 应用数学和力学, 2008, 29(5): 609-617.
引用本文: 陈荣三. 大密度比和大压力比可压缩流的数值计算[J]. 应用数学和力学, 2008, 29(5): 609-617.
CHEN Rong-san. Computation of Compressible Flows With High Density Ratio and Pressure Ratio[J]. Applied Mathematics and Mechanics, 2008, 29(5): 609-617.
Citation: CHEN Rong-san. Computation of Compressible Flows With High Density Ratio and Pressure Ratio[J]. Applied Mathematics and Mechanics, 2008, 29(5): 609-617.

大密度比和大压力比可压缩流的数值计算

基金项目: 国家自然科学基金资助项目(10671120)
详细信息
    作者简介:

    陈荣三(1979- ),男,湖北人,博士生(Tel:+86-21-66743259;E-mail:rschen@yahoo.cn).

  • 中图分类号: O35;O175.27

Computation of Compressible Flows With High Density Ratio and Pressure Ratio

  • 摘要: 将WENO方法、RKDG方法、RKDG方法结合原来的Ghost Fluid方法以及RKDG方法结合改进的Ghost Fluid方法,应用到大密度比和大压力比的单相流以及气-气、气-液两相流的数值计算,并对计算结果进行了比较分析.结果表明,与其它的方法相比,RKDG方法结合改进的Ghost Fluid方法得到了高分辨率的计算结果,可以捕捉到正确的激波位置,随着网格的加密,计算解收敛到物理解.
  • [1] Reed W H,Hill T R.Triangular mesh methods for the neutron transport equation[R]. Los Alamos Scienfic Laboratory Report LA-UR,1973,73-479.
    [2] LeSaint P,Raviart P A.On a finite element methods for solving the neutron transport equation[A].de Boor C,Ed.Mathematical Aspects of Finite Elements in Partial Differential Equations[C].New York:Academic Press,1974,89-145.
    [3] Cockburn B,Gremaud P-A.A prior error estimates for numerical methods for scalar conservation laws—Part Ⅰ:The general approach[J].Math Comp,1996,65(214): 533-573. doi: 10.1090/S0025-5718-96-00701-6
    [4] Cockburn B,Shu C-W.TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws—Ⅱ:General framework[J].Math Comp,1989,52(186):411-435.
    [5] Cockburn B,Lin S-Y,Shu C-W.TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws—Ⅲ:One dimensional systems[J].J Comput Phys,1989,84(1):90-113. doi: 10.1016/0021-9991(89)90183-6
    [6] Cockburn B,Hou S,Shu C-W.TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws Ⅳ:The multidimensional case[J].Math Comp,1990,54(190):541-581.
    [7] Cockburn B,Shu C-W.TVB Runge-Kutta local projecting discontinuous Galerkin finite element methods for conservation laws—Ⅴ:Multidimensional systems[J].J Comput Phys,1998,141(2):199-224. doi: 10.1006/jcph.1998.5892
    [8] Hirt C W,Nichols B D.Volume of fluid(VOF) method for the dynamics of free boundary[J].J Comput Phys,1981,39(1):201-225. doi: 10.1016/0021-9991(81)90145-5
    [9] Mulder W,Osher S,Sethian J A.Computing interface motion in compressible gas dynamics[J]. J Comput Phys,1992,100(2):209-228. doi: 10.1016/0021-9991(92)90229-R
    [10] Marshall G.A front tracking method for one-dimensional moving boundary problems[J].SIAM J Sci Compt,1986,7(1): 252-263. doi: 10.1137/0907017
    [11] Fedkiw R P,Aslam T,Merriman B,et al.A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method)[J].J Comput Phys,1999,152(2):457-492. doi: 10.1006/jcph.1999.6236
    [12] Liu T G,Khoo B C,Yeo K S.Ghost fluid method for strong shock-impacting on material interface[J].J Comput Phys,2003,190(2):651-681. doi: 10.1016/S0021-9991(03)00301-2
    [13] 陈荣三,蔚喜军.一维多介质可压缩流的高精度RKDG有限元方法[J].计算物理,2006,23(1):43-49.
    [14] Tang H Z,Liu T G.A note on the conservative schemes for the Euler equations[J].J Comput Phys,2006,218(2):451-459. doi: 10.1016/j.jcp.2006.03.035
    [15] Osher S,Fedkiw R.Level Set Methods and Dynamic Implicit Surfaces[M].New York:Springer, 2003.
    [16] 刘儒勋,刘晓平,张磊,等.运动界面的追踪和重构方法[J].应用数学和力学, 2004,25(3): 279-290.
  • 加载中
计量
  • 文章访问数:  2663
  • HTML全文浏览量:  150
  • PDF下载量:  637
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-10-31
  • 修回日期:  2008-04-14
  • 刊出日期:  2008-05-15

目录

    /

    返回文章
    返回