留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类具年龄结构n维食物链模型的最优收获控制

雒志学 杜明银

雒志学, 杜明银. 一类具年龄结构n维食物链模型的最优收获控制[J]. 应用数学和力学, 2008, 29(5): 618-630.
引用本文: 雒志学, 杜明银. 一类具年龄结构n维食物链模型的最优收获控制[J]. 应用数学和力学, 2008, 29(5): 618-630.
LUO Zhi-xue, DU Ming-yin. Optimal Harvesting for an Age-Dependent n-Dimensional Food Chain Model[J]. Applied Mathematics and Mechanics, 2008, 29(5): 618-630.
Citation: LUO Zhi-xue, DU Ming-yin. Optimal Harvesting for an Age-Dependent n-Dimensional Food Chain Model[J]. Applied Mathematics and Mechanics, 2008, 29(5): 618-630.

一类具年龄结构n维食物链模型的最优收获控制

基金项目: 国家自然科学基金资助项目(10771048)
详细信息
    作者简介:

    雒志学(1963- ),男,甘肃宁县人,博士,副教授(联系人.Tel:+86-931-4956559;E-mail:luozhix@263.net).

  • 中图分类号: O175.1

Optimal Harvesting for an Age-Dependent n-Dimensional Food Chain Model

  • 摘要: 研究一类具有年龄结构n维食物链模型的最优收获控制.利用不动点定理,证明了系统非负解的存在性和唯一性.由Mazur定理,证明了最优控制策略的存在性,同时由法锥概念的特征刻画,还得到了控制问题最优解存在的必要条件.
  • [1] Brokate M.Pontryagin's principle for control problems in age-dependent population dynamics[J].J Math Biol,1985,23:75-101. doi: 10.1007/BF00276559
    [2] Murphy L F,Smith S J.Optimal harvesting of an age-structured population[J].J Math Biol,1990,29:77-90.
    [3] Clark C W.Mathematical Bioeconomics: the Optimal Management of Renewable Resouces[M].2Ed.New York:John Wiley and Sons Inc,1990.
    [4] Busoni G,Matucci S.A problem of optimal harvesting policy in two-stage age-dependent population[J].Math Biosci,1997,143:1-33. doi: 10.1016/S0025-5564(97)00011-4
    [5] Anita S.Optimal harvesting for a nonlinear age-dependent population dynamics[J].J Math Anal Appl,1998,226:6-22. doi: 10.1006/jmaa.1998.6064
    [6] Anita S,Iannelli M,Kim M Y,et al.Optimal harvesting for periodic age-dependent population dynamics[J].SIAM J Appl Math,1998,58(5):1648-1666. doi: 10.1137/S0036139996301180
    [7] Anita S.Analysis and Control of Age-Dependent Population Dynamics[M].Dordrecht:Kluwer Academic Publishers,2000.
    [8] Albrecht F,Gatzke H,Haddad A,et al.On the control of certain interacting populations[J].J Math Anal Appl,1976,53:578-603. doi: 10.1016/0022-247X(76)90094-9
    [9] Lenhart S,Liang M,Protopopescu V.Optimal control of boundary habitat hostility for interacting species[J].Math Mech Appl Sci,1999,22:1061-1077. doi: 10.1002/(SICI)1099-1476(19990910)22:13<1061::AID-MMA70>3.0.CO;2-I
    [10] Crespo L G,Sun J Q.Optimal control of populations of competing species[J].Nonlinear Dynamics,2002,27:197-210. doi: 10.1023/A:1014258302180
    [11] MENG Xin-zhu,JIAO Jian-jun,CHEN Lan-sun.The dynamics of an age structured predator-prey model with disturbing pulse and time delays[J].Nonlinear Analysis: Real World Applications,2008,9(2):547-561. doi: 10.1016/j.nonrwa.2006.12.001
    [12] Chan W L,Guo B Z.Optimal birth control of population dynamics[J].J Math Anal Appl,1989,144:532-552. doi: 10.1016/0022-247X(89)90350-8
    [13] Webb G F.Theory of Nonlinear Age-dependent Population Dynamics[M].N Y:Marcel Dekker,1985.
    [14] Iannelli M.Mathematical Theory of Age-Structured Population Dynamics[M].Pisa:E Stampatori,1994.
    [15] Barbu V,Precupanu T.Convexity and Optimization in Banach Spaces[M].Dordrecht-Boston:D.Reidel Publishing Company,1986.
    [16] 孟新柱,陈兰荪,宋治涛.一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为[J].应用数学和力学,2007,28(9):1123-1134.
  • 加载中
计量
  • 文章访问数:  2637
  • HTML全文浏览量:  174
  • PDF下载量:  707
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-09-02
  • 修回日期:  2008-03-18
  • 刊出日期:  2008-05-15

目录

    /

    返回文章
    返回