留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重构高阶导数的磨光方法

赵振宇 贺国强

赵振宇, 贺国强. 重构高阶导数的磨光方法[J]. 应用数学和力学, 2008, 29(6): 696-704.
引用本文: 赵振宇, 贺国强. 重构高阶导数的磨光方法[J]. 应用数学和力学, 2008, 29(6): 696-704.
ZHAO Zhen-yu, HE Guo-qiang. Reconstruction of High Order Derivatives by New Mollification Methods[J]. Applied Mathematics and Mechanics, 2008, 29(6): 696-704.
Citation: ZHAO Zhen-yu, HE Guo-qiang. Reconstruction of High Order Derivatives by New Mollification Methods[J]. Applied Mathematics and Mechanics, 2008, 29(6): 696-704.

重构高阶导数的磨光方法

详细信息
    作者简介:

    赵振宇(1977- ),男,河北唐山人,博士(E-mail:wozitianshanglai@163.com);贺国强(1946- ),男,浙江镇海人,教授(联系人.Tel:+86-21-66134464;E-mail:gqhe@staff.shu.edu.cn).

  • 中图分类号: O241

Reconstruction of High Order Derivatives by New Mollification Methods

  • 摘要: 考虑由扰动数据重构原函数的导数问题.基于L-广义解正则化理论,提出了一个新的磨光方法的框架.给出一个具体的求解前3阶导数的算法,其中正则化策略选择了一种改进的TSVD(truncated singular value decomposition)方法(典则TSVD方法).数值结果进一步验证了理论结果及新方法的有效性.
  • [1] Gorenflo R,Vessella S.Abel Integral Equations,Analysis and Application,Lecture Notes in Mathematics[M].Berlin:Springer-verlag,1991.
    [2] Deans S R.Radon Transform and Its Applications[M].New York:A Wiley-Interscience Publication,John Wiley & Sons Inc,1983.
    [3] Hanke M,Scherzer O.Inverse problems light:numerical differentiation[J].Amer Math Monthly,2001,108(6):512-521. doi: 10.2307/2695705
    [4] Murio D A.The Mollification Method and the Numerical Solution of Ill-Posed Problems[M].New York:A Wiley-Interscience Publication,John Wiley & Sons Inc,1993.
    [5] Murio D A, Mejia C E,Zhan S.Discrete mollification and automatic numerical differentiation[J].Compute Math Appl,1998,35(5):1-16.
    [6] Heinz W, Hanke M,Neubauer A.Regularization of Inverse Problems[M].Dordrecht:Kluwer Academic Publishers,1996.
    [7] Khan I R,Ohba R.New finite difference formulas for numerical differentiation[J].J Compu Appl Math,2000,126(1/2):269-276. doi: 10.1016/S0377-0427(99)00358-1
    [8] Wang Y B,Hon Y C,Cheng J.Reconstruction of high order derivatives from input data[J].J Inverse Ill-Posed Probl,2006,14(1):205-218. doi: 10.1515/156939406777571085
    [9] Wei T,Li M.High order numerical derivatives for one-dimensional scattered noisy data[J]. Appl Math Comput,2006,175(2):1744-1759. doi: 10.1016/j.amc.2005.09.018
    [10] Manselli P,Miller K.Calculation of the surface temperature and heat flux on one side of a wall from measurements on the opposite side[J].Ann Mat Pura Appl,1980,123(4):161-183. doi: 10.1007/BF01796543
    [11] Murio D A.Numerical method for inverse transient heat conduction problems[J].Revista de la Union Mathematic Argentina,1981,30(1):25-36.
    [12] Hao D N.A mollification method for ill-posed problems[J].Numer Math,1994,68(4):469-506. doi: 10.1007/s002110050073
    [13] Elden L, Berntsson F,Reginska T.Wavelet and Fourier method for solving the sideways heat equation[J].SIAM J Scient Comp,2000,21(6):2187-2205. doi: 10.1137/S1064827597331394
    [14] He G Q.A TSVD form for ill-posed equations leading to optimal convergence rates[A].In:ICM 2002,Abstracts of Short Communication and Poster Sessions[C].Beijing:Higher Edu Press,2002,328.
    [15] Locker J,Prenter P M.Regularization with differential operators—Ⅰ general theory[J].J Math Anal Appl,1980,74(2):504-529. doi: 10.1016/0022-247X(80)90145-6
    [16] Adams R A.Sobolev Spaces[M].Pure and Applied Mathematics.Vol 65.New York-London:Academic Press,1975.
  • 加载中
计量
  • 文章访问数:  2687
  • HTML全文浏览量:  150
  • PDF下载量:  616
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-09-24
  • 修回日期:  2008-03-24
  • 刊出日期:  2008-06-15

目录

    /

    返回文章
    返回