Positive Solutions of Three-Point Boundary Value Problems
-
摘要: 利用Krasnoselskii's不动点定理和重合度定理,研究了p-Laplace三点边值问题单解或多解的存在性,以及在共振情况下解的存在性.Abstract: The existence of single or multiple positive solutions of three-point boundary value problems involving one dimensional p-Laplacian was considered. Then the existence of solution when the problems is in resonance case was studied. The approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree theory.
-
[1] Yang X J.Positive solutions for the one dimensional p-Laplacian[J].Mathematical and Computer Modelling,2002,35(1/2):129-135. doi: 10.1016/S0895-7177(01)00155-8 [2] Agarwal R P,Lü H S,O'Regan D.Eigenvalues and the one-dimensional p-Laplacian[J].J Math Anal Appl,2002,266(2):384-400. [3] Lü H S,O'Regan D,Zhong C K.Multiple positive solutions for the one-dimensional singular p-Laplacian}[J].Appl Math Compute,2002,133(2/3):407-422. doi: 10.1016/S0096-3003(01)00240-5 [4] Wong F H.Existence of positive solutions for m-Laplacian boundary value problems[J].Appl Math Letters,1999,12(3):11-17 [5] Feng W Y. On an m-point boundary value problem[J].Nonlinear Anal TMA,1997,30(8):5369-5374. doi: 10.1016/S0362-546X(97)00360-X [6] Ma R Y.Positive solutions of a nonlinear three-point boundary value problem[J].Electronic J Differential Equations,1999,1999(34):1-8. [7] Liu B.Positive solution of singular three-point boundary value problems for the one-dimensional p-Laplacian[J].Comput Math Appl,2004,48(5/6):913-925. doi: 10.1016/j.camwa.2003.08.011 [8] Mawhin J.Topological Degree and Boundary Value Problems for Nonlinear Differential Equations[M].Lecture Notes in Mathematics.Vol 1537.New York/Berlin,1991. [9] Bai C Z,Fang J X.Existence of positive solutions for three-point boundary value problems at resonance[J].J Math Anal Appl,2004,291(2):538-549. doi: 10.1016/j.jmaa.2003.11.014
计量
- 文章访问数: 2993
- HTML全文浏览量: 102
- PDF下载量: 620
- 被引次数: 0