留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sobolev方程各向异性矩形非协调有限元分析

石东洋 王海红 郭城

石东洋, 王海红, 郭城. Sobolev方程各向异性矩形非协调有限元分析[J]. 应用数学和力学, 2008, 29(9): 1089-1100.
引用本文: 石东洋, 王海红, 郭城. Sobolev方程各向异性矩形非协调有限元分析[J]. 应用数学和力学, 2008, 29(9): 1089-1100.
SHI Dong-yang, WANG Hai-hong, GUO Cheng. Anisotropic Rectangular Nonconforming Finite Element Analysis for Sobolev Equations[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1089-1100.
Citation: SHI Dong-yang, WANG Hai-hong, GUO Cheng. Anisotropic Rectangular Nonconforming Finite Element Analysis for Sobolev Equations[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1089-1100.

Sobolev方程各向异性矩形非协调有限元分析

基金项目: 国家自然科学基金资助项目(10671184)
详细信息
    作者简介:

    石东洋(1961- ),男,河南鲁山人,博士(联系人.Tel:+86-371-67767813;E-mail:shi-dy@zzu.edu.cn).

  • 中图分类号: O242.21

Anisotropic Rectangular Nonconforming Finite Element Analysis for Sobolev Equations

  • 摘要: 研究了Sobolev方程的各向异性矩形非协调有限元方法.在半离散和全离散格式下,得到了与传统协调有限元方法相同的最优误差估计和超逼近性质.进一步地利用插值后处理技术得到了整体超收敛结果.最后的数值结果表明了理论分析的正确性.
  • [1] Ewing R E.Time-stepping Galerkin methods for nonlinear Sobolev partial-differential equations[J].SIAM J Numer Anal,1978,15(6):1125-1150. doi: 10.1137/0715075
    [2] Nakao M T.Error estimate of a Galerkin method for some nonlinear Sobolev equations in one space dimension[J].Numer Math,1985,47(1):139-157. doi: 10.1007/BF01389881
    [3] JIANG Zi-wen, CHEN Huan-zhen.Error estimates of mixed finite element methods for sobolevequation[J].Northeast Math,2001,17(3):301-314.
    [4] 郭玲,陈焕贞.Sobolev方程的H1-Galerkin混合有限元方法[J].系统科学与数学,2006,26(3):301-314.
    [5] Ciarlet P G. The Finite Element Method for Elliptic Problems[M].Amsterdam: North-Holland, 1978.
    [6] SHI Dong-yang,MAO Shi-peng, CHEN Shao-chun. An anisotropic nonconforming finiteelement with some superconvergence results[J].J Comput Math,2005,23(3):261-274.
    [7] LIN Qun,Tobiska L, ZHOU Ai-hui. Superconvergence and extrapolation of nonconforming low order finite elements applied to the Poisson equation[J].IMA J Numer Anal,2005,25(1):160-181. doi: 10.1093/imanum/drh008
    [8] Hale J K.Ordinary Differential Equations[M].New York:Willey-Inter Science,1969.
    [9] 石东洋,谢萍丽,陈绍春.双曲积分微分方程的各向异性非协调有限元逼近[J].应用数学学报,2007,30(4):654-666.
    [10] 林群,严宁宁.高效有限元构造与分析[M].保定: 河北大学出版社,1996.
    [11] Heywood J G, Rannacher R. Finite element approximation of the nonstationary Navier-Stokes problem IV: Error analysis forsecond-order time discretization[J].SIAM J Numer Anal,1990,27(2):353-384. doi: 10.1137/0727022
    [12] HE Yin-nian. Two-level method based on finite element and Crank-Nicolson extrapolation for time-dependent Navier-Stokes equations[J].SIAM J Numer Anal,2003,41(4):1263-1283. doi: 10.1137/S0036142901385659
    [13] HE Yin-nian, SUN Wei-wei. Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations[J].SIAM J Numer Anal,2007,45(2):837-869. doi: 10.1137/050639910
    [14] HE Yin-nian, SUN Wei-wei. Stabilized finite element methods based on Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations[J].Math Comp,2007,76(257):115-136. doi: 10.1090/S0025-5718-06-01886-2
  • 加载中
计量
  • 文章访问数:  3171
  • HTML全文浏览量:  142
  • PDF下载量:  586
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-01-18
  • 修回日期:  2008-08-01
  • 刊出日期:  2008-09-15

目录

    /

    返回文章
    返回