留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

幂律流体边界层方程的近似解析解和壁摩擦因数的近似值

苏晓红 郑连存 蒋锋

苏晓红, 郑连存, 蒋锋. 幂律流体边界层方程的近似解析解和壁摩擦因数的近似值[J]. 应用数学和力学, 2008, 29(9): 1101-1106.
引用本文: 苏晓红, 郑连存, 蒋锋. 幂律流体边界层方程的近似解析解和壁摩擦因数的近似值[J]. 应用数学和力学, 2008, 29(9): 1101-1106.
SU Xiao-hong, ZHENG Lian-cun, JIANG Feng. Analytical Approximate Solutions and the Approximate Value of Skin Friction Coefficient for the Boundary Layer of Power Law Fluids[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1101-1106.
Citation: SU Xiao-hong, ZHENG Lian-cun, JIANG Feng. Analytical Approximate Solutions and the Approximate Value of Skin Friction Coefficient for the Boundary Layer of Power Law Fluids[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1101-1106.

幂律流体边界层方程的近似解析解和壁摩擦因数的近似值

详细信息
    作者简介:

    苏晓红(1976- ),男,湖北人,讲师(联系人.E-mail:suxh2005@163.com).

  • 中图分类号: O175;O357

Analytical Approximate Solutions and the Approximate Value of Skin Friction Coefficient for the Boundary Layer of Power Law Fluids

  • 摘要: 对幂率流体层流平板边界层的解析解进行了研究.对该问题提供了Adomian分解方法并且推导出了问题的级数形式的近似解析解,该近似解析解具有快速收敛性和易于计算性.对不同的幂率给出了方程的近似解析解和相应的壁摩擦因数近似值,最后对近似解所推出结果和所得壁摩擦因数与文献中的数值解进行了比较验证,证实了该文提出的解析近似方法的准确性和可靠性,说明了该近似解能够应用于提供所研究问题的壁摩擦因数.
  • [1] Schlichting H.Boundary Layer Theory[M].New York: McGraw-Hill Press,1979.
    [2] Schowalter W R. The application of boundary-layer theory to power-law pseudoplastic fluids: Similar solutions[J].AIChE Journal,1960,6(1):24-28. doi: 10.1002/aic.690060105
    [3] Acrivos A, Shah M J, Petersen E E.Momentum and heat transfer in laminar boundary-layer flows of non-Newtonian fluids past external surfaces[J].AIChE Journal,1960,6(2):312-317. doi: 10.1002/aic.690060227
    [4] Nachman A, Callegari A. A nonlinear singular boundary value problem in the theory of pseudoplastic fluids[J].SIAM J Appl Math,1980,38(2):275-281. doi: 10.1137/0138024
    [5] Howell T G. Momentum and heat transfer on a continuous moving surface in power law fluid[J].Internat J Heat Mass Transfer,1997,40(8):1853-1861. doi: 10.1016/S0017-9310(96)00247-5
    [6] Rao J H, Jeng D R, Dewitt K J. Momentum and heat transfer in a power-law fluid with arbitrary injection/suction at a moving wall[J].Internat J Heat Mass Transfer,1999,42(15):2837-2847. doi: 10.1016/S0017-9310(98)00360-3
    [7] Zheng L C, Su X H, Zhang X X.Similarity solutions for boundary layer flow on a moving surface in an otherwise quiescent fluid medium[J].International Journal of Pure and Applied Mathematics,2005,19(4):541-552.
    [8] Zheng L C, Ma L X, He J C. Bifurcation solutions to a boundary layer problem arising in the theory of power law fluids[J].Acta Mathematica Scientia,2000,20(1):19-26.
    [9] Lu C Q, Zheng L C. Similarity solutions of a boundary layer problem in power law fluids through a moving flat plate[J].International Journal of Pure and Applied Mathematics,2004,13(2):143-166.
    [10] Hussaini M Y, Lakin W D, Nachman A. On similarity solutions of a boundary layer problem with an upstream moving wall[J].SIAM J Appl Math,1987,47(4):699-709. doi: 10.1137/0147048
    [11] Zheng L C,He J C.Existence and non-uniqueness of positive solutions to a non-linear boundary value problems in the theory of viscous fluids[J].Dynamic Systems and Applications,1999,8(2):133-145.
    [12] Soewono E, Vajravelu K, Mohapatra R N. Existence and non-uniqueness of solutions of a singular nonlinear boundary-layer problem[J].J Math Anal Appl,1991,159(1):251-270. doi: 10.1016/0022-247X(91)90234-Q
    [13] Akcay M, Ykselen M A. Drag reduction of a non-Newtonian fluid by fluid injection on a moving wall[J].Archive of Applied Mechanics,1999,69(2):215-225. doi: 10.1007/s004190050215
    [14] Wang T Y. Mixed convection heat transfer from a vertical plate to non-Newtonian fluids[J].Internat J Heat Mass Transfer,1995,16(1):56-61.
    [15] Hassanien I A,Abdullah A A, Gorla R S R. Flow and heat transfer in a power-law fluid over a nonisothermal stretching sheet[J].Mathematical and Computer Modelling,1998,28(9):105-116.
    [16] Adomian G.Nonlinear Stochastic Systems Theory and Applications to Physics[M].Dordrecht: Academic Press, 1989.
    [17] Zheng L C, Chen X H, Zhang X X. Analytical approximats for a boundary layer flow on a stretching moving surface with a power velocity[J].International Journal of Applied Mechanics and Engineering,2004,9(4):795-802.
  • 加载中
计量
  • 文章访问数:  2707
  • HTML全文浏览量:  70
  • PDF下载量:  546
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-03-17
  • 修回日期:  2008-07-15
  • 刊出日期:  2008-09-15

目录

    /

    返回文章
    返回