留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线张力作用下微纳米尺度液滴的非线性粘附

吕存景 殷雅俊 郑泉水

吕存景, 殷雅俊, 郑泉水. 线张力作用下微纳米尺度液滴的非线性粘附[J]. 应用数学和力学, 2008, 29(10): 1135-1146.
引用本文: 吕存景, 殷雅俊, 郑泉水. 线张力作用下微纳米尺度液滴的非线性粘附[J]. 应用数学和力学, 2008, 29(10): 1135-1146.
LÜ Cun-jing, YIN Ya-jun, ZHENG Quan-shui. Nonlinear Effects of Line Tension in Adhesion of Small Droplets[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1135-1146.
Citation: LÜ Cun-jing, YIN Ya-jun, ZHENG Quan-shui. Nonlinear Effects of Line Tension in Adhesion of Small Droplets[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1135-1146.

线张力作用下微纳米尺度液滴的非线性粘附

基金项目: 国家自然科学基金资助项目(10572076;10672089)
详细信息
    作者简介:

    吕存景(1981- ),男,河南南阳人,硕士研究生;殷雅俊(1964- ),男,河南人,教授,博士,博士生导师(联系人.Tel:+86-10-62795536;E-mail:yinyj@mail.tsinghua.edu.cn).

  • 中图分类号: O345;O11

Nonlinear Effects of Line Tension in Adhesion of Small Droplets

  • 摘要: 三相接触线上的线张力对微纳米尺度液滴的粘附行为有至关重要的影响.首次在由表面张力、线张力和液滴尺度组成的全参数空间中研究了液滴粘附的非线性行为.研究表明:液滴粘附解空间可以被归纳为4个特征区;在每个特征区内,液滴的粘附行为是相同的;在具有高度非线性的特征区中,给定材料体系,存在着多重粘附态;液滴粘附解空间中存在着两个公共不动点.这些新结果,与数值计算和实验观测相符合.
  • [1] Boal D.Mechanics of the Cell[M].Cambridge:Cambridge University Press,2002.
    [2] Seifert U.Configurations of fluid membranes and vesicles[J].Adv Phys,1997,46(1):13-137. doi: 10.1080/00018739700101488
    [3] Lipowsky R,Lenz P,Swain P S.Wetting and dewetting of structured and imprinted surfaces[J].Colloids Surf,A,2000,161(1):3-22. doi: 10.1016/S0927-7757(99)00321-0
    [4] de Gennes P G.Wetting:statics and dynamics[J].Rev Mod Phys,1985,57(3):827-863. doi: 10.1103/RevModPhys.57.827
    [5] Sackmann E.Supported membranes[J].Scientific and Practical Applications Science,1996,271(5245):43-48.
    [6] Nealey P F,Black A J,Wilbur J L,et al.Molecular Electronics[M].Oxford:Blackwell Science,1997.
    [7] Liu X H,Ross F M,Schwarz K W.Dislocated epitaxial islands[J].Phys Rev Lett,2000,85(19):4088-4091. doi: 10.1103/PhysRevLett.85.4088
    [8] Mendez-Villuendas E,Bowles R K.Surface nucleation in the freezing of gold nanoparticles[J].Phys Rev Lett,2007,98(18):185503. doi: 10.1103/PhysRevLett.98.185503
    [9] Peters R,Yang X,Kim T,et al.Using self-assembled monolayers exposed to X-rays to control the wetting behavior of thin films of diblock copolymers[J].Langmuir,2000,16(10):4625-4631. doi: 10.1021/la991500c
    [10] Lopes W,Jaeger H.Lopes-hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds[J].Nature,2001,414(6865):735-738. doi: 10.1038/414735a
    [11] Whitesides G,Stroock A.Flexible methods for microfluidics[J].Phys Today,2001,54(6):42-48.
    [12] Zheng Q S,Yu Y,Zhao Z H.Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces[J].Langmuir,2005,21(26):12207-12212. doi: 10.1021/la052054y
    [13] Gibbs J W.The Scientific Papers[M].New York:Dover,1961.
    [14] Yutaka S,Nobuyuki M,Tsutomu H,et al.Self-running droplet:emergence of regular motion from nonequilibrium noise[J].Phys Rev Lett,2005,94(6):068301. doi: 10.1103/PhysRevLett.94.068301
    [15] Drelich J.The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems[J].Colloids Surf,A,1996,116(1/2):43-54. doi: 10.1016/0927-7757(96)03651-5
    [16] Li D.Drop size dependence of contact angles and line tensions of solid-liquid systems[J].Colloids Surf,A,1996,116(1/2):1-23. doi: 10.1016/0927-7757(96)03582-0
    [17] Li D,Steigmann D J.Positive line tension as a requirement of stable equilibrium[J].Colloids Surf,A,1996,116(1/2):25-30. doi: 10.1016/0927-7757(96)03583-2
    [18] Amirfazli A,Neumann A W.Status of the three-phase line tension:a review[J].Advance in Colloid and Interface Science,2004,110(3):121-141. doi: 10.1016/j.cis.2004.05.001
    [19] Widom B.Line tension and the shape of a sessile drop[J].J Phys Chem,1995,99(9):2803-2806. doi: 10.1021/j100009a041
    [20] Rosso R,Virga E G.Local stability for a general wetting functional[J].J Phys A:Math Gen,2004,37(13):3989-4015. doi: 10.1088/0305-4470/37/13/006
    [21] Guzzardi L,Rosso R.Sessile droplets on a curved substrate:effects of line tension[J].J Phys A:Math Theor,2007,40(1):19-46. doi: 10.1088/1751-8113/40/1/002
    [22] Rosso R,Virga E G.General stability criterion for wetting[J].Phys Rev E,2003,68(1):012601. doi: 10.1103/PhysRevE.68.012601
    [23] Guzzardi L,Rosso R,Virga E G.Residual stability of sessile droplets with negative line tension[J].Phys Rev E,2006,73(2):021602. doi: 10.1103/PhysRevE.73.021602
    [24] Rosso R,Virga E G.Sign of line tension in liquid bridge stability[J].Phys Rev E,2004,70(3):031603. doi: 10.1103/PhysRevE.70.031603
    [25] Lenz P,Lipowsky R.Morphological transitions of wetting layers on structured surfaces[J].Phys Rev Lett,1998,80(9):1920-1923. doi: 10.1103/PhysRevLett.80.1920
    [26] Blecua P,Lipowsky R,Kierfeld J.Line tension effects for liquid droplets on circular surface domains[J].Langmuir,2006,22(26):11041-11059. doi: 10.1021/la0609773
    [27] Brinkmann M,Kierfeld J,Lipowsky R.A general stability criterion for droplets on structured substrates[J].J Phys A:Math Gen,2004,37(48):11547-11573. doi: 10.1088/0305-4470/37/48/003
    [28] Swain P S,Lipowsky R.Contact angles on heterogeneous surfaces:a new look at Cassie's and Wenzel's laws[J].Langmuir,1998,14(23):6772-6780. doi: 10.1021/la980602k
    [29] Pompe T,Herminghaus S.Three-phase contact line energetics from nanoscale liquid surface topographies[J].Phys Rev Lett,2000,85(9):1930-1933. doi: 10.1103/PhysRevLett.85.1930
    [30] Baumgart T,Hess S T,Webb W W.Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension[J].Nature,2003,425(6960):821-824. doi: 10.1038/nature02013
    [31] Akimov S A,Kuzmin P I,Zimmerberg J,et al.An elastic theory for line tension at a boundary separating two lipid monolayer regions of different thickness[J].J Electroanalytical Chemistry,2004,564:13-18. doi: 10.1016/j.jelechem.2003.10.030
    [32] Kang K H,Kang Is,Lee C M.Electrostatic contribution to line tension in a wedge-shaped contact region[J].Langmuir,2003,19(22):9334-9342. doi: 10.1021/la034539x
    [33] Churaev N V,Starov V M,Derjaguin B V.The shape of the transition zone between a thin film and bulk liquid and the line tension[J].J Colloid Interface Sci,1982,89(1):16-24.[JP2]. Sagis L M C,Slattery J C.Incorporation of line quantities in the continuum description for muitiphase,multiphase,multicomponent bodies with intersecting dividing surfaces—Ⅲ Determination of line tension and fluid-solid surface tensions using small sessile drops[J].J Colloid Interface Sci,1995,176(1):173-182. doi: 10.1006/jcis.1995.0020
    [35] Hoorfar M,Amirfazli A,Gaydos J A,et al.The effects of line tension on the shape of liquid menisci near stripwise heterogeneous walls[J].Advances in Colloid and Interface Science,2005,114/115:103-118. doi: 10.1016/j.cis.2004.06.004
    [36] Bier M,Chen W,Gowrishankar T R,et al.Resealing dynamics of a cell membrane after electroporation[J].Phys Rev E,2002,66(6):062905. doi: 10.1103/PhysRevE.66.062905
    [37] Pompe T.Line tension behavior of a first-order wetting system[J].Phys Rev Lett,2002,89(7):076102. doi: 10.1103/PhysRevLett.89.076102
    [38] Aiwei T,Johnson C,Wang Z W,et al.Line tension at fluid membrane domain boundaries measured by micropipette aspiration[J].Phys Rev Lett,2007,98(20):208102. doi: 10.1103/PhysRevLett.98.208102
    [39] Drelich J,Wilbur J L,Miller J D,et al.Contact angles for liquid drops at a model heterogeneous surface consisting of alternating and parallel hydrophobic/hydrophilic strips[J].Langmuir,1996,12(7):1913-1922. doi: 10.1021/la9509763
    [40] Yongan G.Drop size dependence of contact angles of oil drops on a solid surface in water[J].Colloids Surf A,2001,181(1/3):215-224. doi: 10.1016/S0927-7757(00)00804-9
    [41] Amirfazli A,Keshavarz A,Zhang L,et al.Determination of line tension for systems near wetting[J].J Colloid Interface Sci,2003,265(1):152-160. doi: 10.1016/S0021-9797(03)00521-6
    [42] Chen P,Susnar S S,Amirfazli A,et al.Line tension measurements:an application of the quadrilateral relation to a liquid lens system[J].Langmuir,1997,13(11):3035-3042. doi: 10.1021/la961077x
    [43] Rodrigues J F,Saramago B,Fortes M A.Apparent contact angle and triple-line tension of a soap bubble on a substrate[J].J Colloid Interface Sci,2001,239(2):577-580. doi: 10.1006/jcis.2001.7578
    [44] Vera-Graziano R,Muhl S,Rivera-Torres F.The effect of illumination on contact angles of pure water on crystalline silicon[J].J Colloid Interface Sci,1995,170(2):591-597. doi: 10.1006/jcis.1995.1139
    [45] Amirfazli A,Chatain D,Neumann A W.Drop size dependence of contact angles for liquid tin on silica surface:line tension and its correlation with solid-liquid interfacial tension[J].Colloid Surf A,1998,142(2/3):183-188. doi: 10.1016/S0927-7757(98)00265-9
    [46] Wang J Y,Betelu S,Law B M.Line tension effects near first-order wetting transitions[J].Phys Rev Lett,1999,83(18):3677-3680. doi: 10.1103/PhysRevLett.83.3677
    [47] Dussaud A,Vignes-Adler M.Wetting transition of n-alkanes on concentrated aqueous salt solutions,line tension effect[J].Langmuir,1997,13(3):581-589. doi: 10.1021/la951508w
    [48] Stckelhuber K W,Radoev B,Schulze H J.Some new observations on line tension of microscopic droplets[J].Colloids Surf A,1999,156(1/3):323-333. doi: 10.1016/S0927-7757(99)00084-9
  • 加载中
计量
  • 文章访问数:  2736
  • HTML全文浏览量:  69
  • PDF下载量:  677
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-09-02
  • 修回日期:  2008-09-16
  • 刊出日期:  2008-10-15

目录

    /

    返回文章
    返回