留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两个同心旋转圆柱之间的两种流体的交界面几何形状问题

李开泰 史峰

李开泰, 史峰. 两个同心旋转圆柱之间的两种流体的交界面几何形状问题[J]. 应用数学和力学, 2008, 29(10): 1237-1248.
引用本文: 李开泰, 史峰. 两个同心旋转圆柱之间的两种流体的交界面几何形状问题[J]. 应用数学和力学, 2008, 29(10): 1237-1248.
LI Kai-tai, SHI Feng. Geometric Shape of Interface Surface of Bicomponent Flows Between Two Concentric Rotating Cylinders[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1237-1248.
Citation: LI Kai-tai, SHI Feng. Geometric Shape of Interface Surface of Bicomponent Flows Between Two Concentric Rotating Cylinders[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1237-1248.

两个同心旋转圆柱之间的两种流体的交界面几何形状问题

基金项目: 国家自然科学基金资助项目(10571142;10771167)
详细信息
    作者简介:

    李开泰(1937- ),男,福建人,教授(联系人.Tel:+86-29-82669051;E-mail:ktli@mail.xjtu.edu.cn).

  • 中图分类号: O357;O176

Geometric Shape of Interface Surface of Bicomponent Flows Between Two Concentric Rotating Cylinders

  • 摘要: 研究两个同心旋转圆柱之间的两种流体的交界面几何形状问题.利用张量分析工具,给出了忽略耗散能量影响下交界面几何形状是一种能量泛函的临界点,其对应的Euler-Lagrange方程是1个非线性椭圆边值问题.对于粘性引起的耗散能量不能忽略的情况下,同样给出了1个带有耗散能量的能量泛函,其临界点是交界面几何形状,相应的Euler-Lagrange方程也是1个二阶的非线性椭圆边值问题.这样,交界面几何形状问题转化为求解非线性椭圆边值问题.
  • [1] 李开泰,黄艾香.张量分析及其应用[M].北京:科学出版社,2004.
    [2] 王贺元,李开泰.Couette-Taylor流的谱Galerkin逼近[J].应用数学和力学,2004,25(10):1083-1092.
    [3] 张引娣,李开泰.两个非同心旋转圆柱间粘性流动的广义雷诺方程及其本流[J].高校应用数学学报A辑,2008,23(2):127-139.
    [4] 韩式方.非牛顿流体非定常旋转流动计算机智能解析理论[J].应用数学和力学,1999,20(11):1149-1160.
    [5] 何友声,鲁传敬,陈学农.二层流体中沿任意路径运动的奇点解析解[J].应用数学和力学,1991,12(2):119-134.
    [6] 卢东强,戴世强,张宝善.一个二流体系中非线性水波的Hamilton描述[J].应用数学和力学,1999,20(4):331-336.
    [7] Preziosi L,Joseph D D. The run-off condition for coating and rimming flows[J].J Fluid Mech,1988,187:99-113. doi: 10.1017/S0022112088000357
    [8] Joseph D D, Preziosi L. Stability of rigid motions and coating films in bicomponent flows of immiscible liquids[J].J Fluid Mech,1987,185:323-351. doi: 10.1017/S0022112087003197
    [9] Joseph D D, Renardy Y, Renardy M,et al.Stability of rigid motions and rollers in bicomponent flows of immiscible liquids[J].J Fluid Mech,1985,153:151-165. doi: 10.1017/S0022112085001185
    [10] Girault V, López H,Maury B.One time-step finite element discretization of the equation of motion of two-fluid flows[J].Numerical Methods for Partial Differential Equations,2006,22(3):680-707.[JP2]. Wu J, Yu S T, Jiang B N.Simulation of two-fluid flows by the least-squares finite element method using a continuum surface tension model[J].Internat J Numer Methods Fluids,1998,42(4):583-600. doi: 10.1002/num.20117
    [12] Cruchaga M, Celentano D, Breitkopf P,et al.A front remeshing technique for a Lagrangian description of moving interfaces in two-fluid flows[J].Internat J Numer Methods Fluids,2006,66(13):2035-2063.
    [13] Lee S J, Changb K S, Kim S J. Surface tension effect in the two-fluids equation system[J].International Journal of Heat and Mass Transfer,1998,41(18):2821-2826. doi: 10.1016/S0017-9310(98)00043-X
    [14] Ohmori K. Numerical solution of two-fluid flows using finite element method[J].Appl Math Comput,1998,92(2):125-133. doi: 10.1016/S0096-3003(97)10036-4
    [15] Smolianski A. Finite-element/level-set/operator-splitting (FELSOS) approach for computing two-fluid unsteady flows with free moving interfaces[J].Internat J Numer Methods Fluids,2005,48(3):231-269. doi: 10.1002/fld.823
    [16] Sousa F S, Mangiavacchi N. A Lagrangian level-set approach for the simulation of incompressible two-fluid flows[J].Internat J Numer Methods Fluids,2005,47(10/11):1393-1401. doi: 10.1002/fld.899
    [17] Li Z R, Jaberi A, Shih T. A hybrid Lagrangian-Eulerian particle-level set method for numerical simulations of two-fluid turbulent flows[J].Internat J Numer Methods Fluids,2008,56(12):2271-2300. doi: 10.1002/fld.1621
    [18] Sussman M, Smereka P,Osher S. A level set approach to computing solutions to incompressible two-phase flow[J].J Comp Phys,1994,114(1):146-159. doi: 10.1006/jcph.1994.1155
    [19] Unverdi S O, Tryggvason G.A front-tracking method for viscous, incompressible, multi-fluid flows[J].J Comp Phys,1992,100(1):25-37. doi: 10.1016/0021-9991(92)90307-K
    [20] Chang Y C, Hou T Y,Merriman B,et al.A level set formulation of Eulerian interface capturing methods for incompressible fluid flows[J].J Comp Phys,1996,124(2):449-464. doi: 10.1006/jcph.1996.0072
    [21] Galusinski C, Vigneaux P. On stability condition for bifluid flows with surface tension: Application to microfluidics[J].J Comp Phys,2008,227(12):6140-6164.
    [22] Sousa F S, Mangiavacchi N, Nonato L G,et al.A front-tracking/front-capturing method for the simulation of 3D multi-fluid flows with free surfaces[J].J Comp Phys,2004,198(2):469-499. doi: 10.1016/j.jcp.2004.01.032
    [23] Berger M S.Nonlinearity and Functional Analysis[M].Lectures on Nonlinear Problems in Mathematical Analysis.New York,San Francisco, London:Academic Press,1977.
  • 加载中
计量
  • 文章访问数:  3072
  • HTML全文浏览量:  138
  • PDF下载量:  694
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-02-01
  • 修回日期:  2008-08-22
  • 刊出日期:  2008-10-15

目录

    /

    返回文章
    返回