留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于非惯性系湍流模拟的扩展内禀旋转张量

黄于宁 马晖扬

黄于宁, 马晖扬. 应用于非惯性系湍流模拟的扩展内禀旋转张量[J]. 应用数学和力学, 2008, 29(11): 1325-1336.
引用本文: 黄于宁, 马晖扬. 应用于非惯性系湍流模拟的扩展内禀旋转张量[J]. 应用数学和力学, 2008, 29(11): 1325-1336.
HUANG Yu-ning, MA Hui-yang. The Extended Intrinsic Mean Spin Tensor for Turbulence Modelling in a Non-Inertial Frame of Reference[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1325-1336.
Citation: HUANG Yu-ning, MA Hui-yang. The Extended Intrinsic Mean Spin Tensor for Turbulence Modelling in a Non-Inertial Frame of Reference[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1325-1336.

应用于非惯性系湍流模拟的扩展内禀旋转张量

详细信息
    作者简介:

    黄于宁(1961- ),男,广东人,教授,博士(E-mail:yuninghuang@yahoo.com);马晖扬(联系人.Tel:+86-10-88256351).

  • 中图分类号: O357.5

The Extended Intrinsic Mean Spin Tensor for Turbulence Modelling in a Non-Inertial Frame of Reference

  • 摘要: 研究扩展内禀旋转张量在非惯性系湍流模拟中的作用,特别是对代数Reynolds应力湍流模式(如非线性K-ε模式)的重要性.为此,采用几个近年来发展的非线性K-ε湍流模式模拟旋转坐标系下均匀剪切湍流,并且和大涡模拟的结果进行比较.计算结果和分析表明,需要发展更先进的非线性K-ε模式从而更好地描述非惯性系下的复杂湍流.
  • [1] Lumley J L.Toward a turbulent constitutive equation[J].Journal of Fluid Mechanics,1970,41:413-434. doi: 10.1017/S0022112070000678
    [2] Lumley J L.Computational modeling of turbulent flows[J].Advances in Applied Mechanics,1978,18:123-176.
    [3] Launder B E,Tselepidakis D P,Younis B A.A second-moment closure study of rotating channel flow[J].Journal of Fluid Mechanics,1987,183:63-75. doi: 10.1017/S0022112087002520
    [4] Speziale C G,Gatski T B,Mac Giolla Mhuiris N.A critical comparison of turbulence models for homogeneous shear flows in a rotating frame[J].Physics of Fluids A,1990,2(9):1678-1684. doi: 10.1063/1.857575
    [5] Kristoffersen R,Andersson H.Direct simulation of low-Reynolds-number turbulent flow in a rotating channel[J].Journal of Fluid Mechanics,1993,256:163-197. doi: 10.1017/S0022112093002757
    [6] Gatski T B,Speziale C G.On explicit algebraic models for complex turbulent flows[J].Journal of Fluid Mechanics,1993,254:59-78. doi: 10.1017/S0022112093002034
    [7] Jongen T,Mompean G,Gatski T B.Accounting for Reynolds stress and dissipation rate anisotropies in inertial and non-inertial frames[J].Physics of Fluids,1998,10(3):674-684. doi: 10.1063/1.869593
    [8] Nagano Y,Hattori H.An improved turbulence model for rotating shear flows[J].Journal of Turbulence,2002,3(6):1-14. doi: 10.1088/1468-5248/3/1/001
    [9] Nagano Y,Hattori H. Direct numerical simulation and modelling of spanwise rotating channel flow with heat transfer[J].Journal of Turbulence,2003,4(10):1-15.
    [10] Yoshizawa A,Nisizima S,Shimomura Y,et al.A new methodology for Reynolds-averaged modeling based on the amalgamation of heuristic-modeling and turbulence-theory methods[J].Physics of Fluids,2006,18(3),035109.DOI: 10.106311.2186669.
    [11] Chou P Y.On velocity correlations and the solution of the equations of turbulent motion[J].Quarterly of Applied Mathematics,1945,3:38-54.
    [12] Huang Y N,Ma H Y.Reynolds stress model involving the mean spin tensor[J].Physical Review E,2004,70(5):036302. doi: 10.1103/PhysRevE.70.036302
    [13] Tavoularis S,Corrsin S. Experiments in nearly homogeneous turbulent shear flow with a uniform temperature gradient Parts 1 and 2[J].Journal of Fluid Mechanics,1981,104:311-367. doi: 10.1017/S0022112081002930
    [14] Craft T J, Launder B E, Suga K. Development and application of a cubic eddy-viscosity model of turbulence[J].International Journal of Heat and Fluid Flow,1996,17(2):108-115. doi: 10.1016/0142-727X(95)00079-6
    [15] Shih T H,Zhu J,Liou W,et al.Modeling of turbulent swirling flows[A].In:Proceedings of 11th Symposium on Turbulent Shear Flows[C].Grenoble,France,1997,31.1-31.6.
    [16] Bardina J,Ferziger J H,Reynolds W C.Improved turbulence models based on large-eddy simulation of homogeneous,incompressible turbulent flows[R]. Tech.Report TF-19,Stanford,California:Stanford University,1983.
    [17] Truesdell C,Noll W.The non-Linear field theories of mechanics[A].In:Flügge S,Truesdell C,Eds.Handbuch der Physik[C].vol Ⅲ/3.Berlin:Springer-Verlag 1965.
    [18] Huang Y N,Durst F.Reynolds stress under a change of frame of reference[J].Physical Review E,2001,63(5):056305. doi: 10.1103/PhysRevE.63.056305
    [19] Speziale C G.Turbulence modeling in noninertial frames of reference[J].Theoretical and Computational Fluid Dynamics,1989,1(1):3-19.
    [20] Gatski T B,Wallin S.Extending the weak-equilibrium condition for algebraic Reynolds stress models to rotating and curved flows[J].Journal of Fluid Mechanics,2004,518:147-155. doi: 10.1017/S0022112004000837
    [21] Speziale C G,Mac Giolla Mhuiris N.On the prediction of equilibrium states in homogeneous turbulence[J].Journal of Fluid Mechanics,1989,209:591-615. doi: 10.1017/S002211208900323X
    [22] Speziale C G,Sarkar S,Gatski T B.Modelling the pressure-strain correlation of turbulence:an invariant dynamical systems approach[J].Journal of Fluid Mechanics,1991,227:245-272. doi: 10.1017/S0022112091000101
    [23] Pope S B.A more general effective-viscosity hypothesis[J].Journal of Fluid Mechanics,1975,72:331-340. doi: 10.1017/S0022112075003382
    [24] Huang Y N.A note on the “principle of material frame-indifference in the limit of two-dimensional turbulence”[J].Communications in Nonlinear Science and Numerical Simulation,2006,11(1):854-860. doi: 10.1016/j.cnsns.2004.12.012
    [25] Lumley J L.Turbulence modeling[J].ASME Journal of Applied Mechanics,1983,50:1097-1103. doi: 10.1115/1.3167192
    [26] Huang Y N.On modelling the Reynolds stress in the context of continuum mechanics[J].Communications in Nonlinear Science and Numerical Simulation,2004,9(5):543-559. doi: 10.1016/S1007-5704(03)00007-8
    [27] Huang Y N,Ma H Y,Chu H J.Modelling turbulent swirling flows based on the approach of two-equation K-ε approach[J].International Journal for Numerical Methods in Fluids,2006,51(3):285-304. doi: 10.1002/fld.1123
  • 加载中
计量
  • 文章访问数:  3489
  • HTML全文浏览量:  149
  • PDF下载量:  717
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-06-10
  • 修回日期:  2008-10-05
  • 刊出日期:  2008-11-15

目录

    /

    返回文章
    返回