留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混沌Mathieu-Duffing振子的开闭环控制

沈建和 陈树辉

沈建和, 陈树辉. 混沌Mathieu-Duffing振子的开闭环控制[J]. 应用数学和力学, 2009, 30(1): 21-29.
引用本文: 沈建和, 陈树辉. 混沌Mathieu-Duffing振子的开闭环控制[J]. 应用数学和力学, 2009, 30(1): 21-29.
SHEN Jian-he, CHEN Shu-hui. Open-Plus-Closed-Loop Control for Chaotic Mathieu-Duffing Oscillator[J]. Applied Mathematics and Mechanics, 2009, 30(1): 21-29.
Citation: SHEN Jian-he, CHEN Shu-hui. Open-Plus-Closed-Loop Control for Chaotic Mathieu-Duffing Oscillator[J]. Applied Mathematics and Mechanics, 2009, 30(1): 21-29.

混沌Mathieu-Duffing振子的开闭环控制

基金项目: 国家自然科学基金资助项目(10672193)
详细信息
    作者简介:

    沈建和(1980- ),男,福建漳州人,博士(联系人.E-mail:jianheshen@sina.com

  • 中图分类号: O322

Open-Plus-Closed-Loop Control for Chaotic Mathieu-Duffing Oscillator

  • 摘要: 基于开闭环控制的思想,设计了一类由外激力与线性误差反馈组成的开闭环控制器,研究了Mathieu-Duffing振子混沌轨道至任意目标周期轨道的控制问题;同时,利用Liapunov稳定性理论与二阶常微分方程初值问题的一个比较定理,证明了上述开闭环控制夹带盆(basin of entrainment)的全局性.最后,利用数值模拟,验证了理论结果的正确性.
  • [1] Ott E, Grebogi C, Yorke J. Controlling chaos[J].Physical Review Letters,1990,64(11):1196-1199. doi: 10.1103/PhysRevLett.64.1196
    [2] Andrievskii B R, Fradkov A L.Control of chaos:methods and applications I:method[J].Aotumation and Remote Control,2003,64(5):673-713. doi: 10.1023/A:1023684619933
    [3] Fradkov A L, Evans R J.Control of chaos:methods and applications in engineering[J].Annual Reviews in Control,2005,29(1):33-56. doi: 10.1016/j.arcontrol.2005.01.001
    [4] Boccaletti S, Grebogi C, Lai Y C,et al.The control of chaos:theory and applications[J].Physics Reports,2000, 329(3):103-197. doi: 10.1016/S0370-1573(99)00096-4
    [5] Chen G R, Dong X N. From Chaos to Order:Perspectives, Methodologies and Applications[M].Singapore:World Scientific, 1998.
    [6] Jackson E A, Grosu I.An open-plus-closed-loop control of complex dynamics systems[J].Physica D,1995,85(1):1-9. doi: 10.1016/0167-2789(95)00171-Y
    [7] Jackson E A. The OPCL control for entrainment, model-resonance and migration actions on multi-attractor systems[J].Chaos, 1997,7(4):550-559. doi: 10.1063/1.166283
    [8] Wheeler D W, Schieve W C.Entrainment control in a noisy neural system[J].Physical Review E,2003,67(4):046219-1-046219-6. doi: 10.1103/PhysRevE.67.046219
    [9] Chen L Q. An open-plus-closed-loop control for discrete chaos and hyperchaos[J].Physics Letters A,2001,281(5/6):327-333. doi: 10.1016/S0375-9601(01)00055-X
    [10] Chen L Q, Liu Y Z.An open-plus-closed-loop approach to synchronization of chaotic and hyperchaotic maps[J].International Journal of Bifurcation and Chaos,2002,12(5):1219-1225. doi: 10.1142/S0218127402005066
    [11] Chen L Q, Liu Y Z.A modified open-plus-closed-loop approach to control chaos in nonlinear oscillations[J].Physics Letters A,1998,245(1/2):87-90. doi: 10.1016/S0375-9601(98)00342-9
    [12] Chen L Q, Liu Y Z.The parametric open-plus-closed-loop control of chaotic maps and its robustness[J].Chaos, Solitons & Fractals,2004,21(1):113-118.
    [13] Tian Y C, Tadé M O, Tang J Y.Nonlinear open-plus-closed-loop(NOPCL) control of dynamic systems[J].Chaos, Solitons & Fractals,2000,11(7):1029-1035.
    [14] Slotine J J E, Li W P.Applied Nonlinear Control[M].Beijing:China Machine Press, 2004.
    [15] Ravindra B, Zhu W D. Low-dimensional chaotic response of axially accelerating continuum in the supercritical regime[J].Archive of Applied Mechanics,1998,68(3/4):195-205. doi: 10.1007/s004190050157
    [16] Shen J H, Lin C K, Chen S H,et al.Bifurcations and route-to-chaos of Mathieu-Duffing oscillator by the incremental harmonic balance method[J].Nonlinear Dynamics,2008,52(4):404-413.
    [17] Chen G R, Dong X N. On feedback control of chaotic continuous-time systems[J].IEEE Transactions on Circuits and Systems—1:Fundamental Theory and Applications,1993,40(9):591-601. doi: 10.1109/81.244908
    [18] Li R H, Xu W, Li S.Chaos control and synchronization of the Φ6-Van der Pol system driven by external and parametric excitations[J].Nonlinear Dynamics,2008,53(3):261-271. doi: 10.1007/s11071-007-9313-3
  • 加载中
计量
  • 文章访问数:  2896
  • HTML全文浏览量:  151
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-07-19
  • 修回日期:  2008-11-17
  • 刊出日期:  2009-01-15

目录

    /

    返回文章
    返回