Algorithm for the Inverse of a General Tridiagonai Matrix
-
摘要: 研究了一般的非奇三对角矩阵的求逆,并给出了一个求逆矩阵的简单算法.首先研究了具有Doolittle分解的三对角矩阵的求逆,得到一个求逆的算法,然后将该算法推广到一般的非奇三对角矩阵上.最后给出了该算法与其它求逆方法的比较,可以看到该算法一方面计算量低,另一方面适用于不需任何附加条件的一般的非奇三对角矩阵.
-
关键词:
- 三对角矩阵 /
- 逆矩阵 /
- Doolittle分解
Abstract: An algorithm for the inverse of a general tridiagonal matrix is presented. First, for the tridiagonal matzix having Doolittle factorization, an algorithm for the inverse was established. Then the algorithm was generalized to a general tridiagonal matrix without aqy restrictive condition. Some comparison with other methods operations of the algorithm for the inverse was discussed in the end. It is shown that the arithmetic operations of the algorithm are low and it is applicable to a general tridiagonal matrix.-
Key words:
- tridiaigonal matrix /
- inverse /
- Doolittle factorization
-
[1] El-Mikkawy M E A. On the inverse of a general tridiagonal matrix[J].Applied Mathematics and Computation,2004,150(3):669-679. doi: 10.1016/S0096-3003(03)00298-4 [2] Ranjan K M. The inverse of a tridiagonal matrix[J].Linear Algebra and Its Applications,2001,325(1/3):109-139. doi: 10.1016/S0024-3795(00)00262-7 [3] Meurant G. A review on the inverse of symmetric tridiagonal and block tridiagonal matrices[J].SIAM Journal on Matrix Analysis and Applications,1992,13(3):707-728. doi: 10.1137/0613045 [4] Nabben R. Decay rates of the inverse of nonsymmetric tridiagonal and band matrix[J]. SIAM Journal on Matrix Analysis and Applications,1999,20(3):820-837. doi: 10.1137/S0895479897317259 [5] El-Mikkawy M E A. An algorithm for solving tridiagonal systems[J].Journal of Institute of Mathematics and Computer Sciences,1991,4(2):205-210. [6] 丁丽娟. 数值计算方法[M]. 北京: 北京理工大学出版社, 1997, 113-115.
计量
- 文章访问数: 5092
- HTML全文浏览量: 219
- PDF下载量: 2416
- 被引次数: 0