[1] |
Lighthill M J, Whitham G B. On kinematic waves—Ⅱ:a theory of traffic flow on long crowded roads[J].Proceedings of the Royal Society of London, Series A,1955,229(1178):317-345. doi: 10.1098/rspa.1955.0089
|
[2] |
Richards P I. Shockwaves on the highway[J].Operations Research,1956,4(1):42-51. doi: 10.1287/opre.4.1.42
|
[3] |
ZHANG Peng, LIU Ru-xun. Hyperbolic conservation laws with space-dependent flux—Ⅰ:characteristics theory and Riemann problem[J].Journal of Computational and Applied Mathematics,2003,156(1):1-21. doi: 10.1016/S0377-0427(02)00880-4
|
[4] |
ZHANG Peng, LIU Ru-xun. Hyperbolic conservation laws with space-dependent flux—Ⅱ:general study on numerical fluxes[J].Journal of Computational and Applied Mathematics, 2005,176(1):105-129. doi: 10.1016/j.cam.2004.07.005
|
[5] |
ZHANG Peng, LIU Ru-xun. Generalization of Runge-Kutta discontinuous Galerkin method to LWR traffic flow model with inhomogeneous road conditions[J].Numerical Methods for Partial Differential Equations,2005,21(1):80-88. doi: 10.1002/num.20023
|
[6] |
Bürger R , Gracía A, Karlsen K H,et al.A family of numerical schemes for kinematic flows with discontinuous flux[J].Journal of Engineering Mathematics,2008,60(3/4):387-425. doi: 10.1007/s10665-007-9148-4
|
[7] |
Bürger R, Gracía A, Karlsen K H,et al.Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model[J].Network Heterogeneous Media,2008,3(1):1-41. doi: 10.3934/nhm.2008.3.1
|
[8] |
Lin W H, Lo H K. A theoretical probe of a German experiment on stationary moving traffic jams[J].Transportation Research Part B,2003,37(3):251-261. doi: 10.1016/S0191-2615(02)00012-7
|
[9] |
Kerner B S, Konhuser P. Structure and parameters of clusters in traffic flow[J]. Physical Review E,1994,50(1):54-83. doi: 10.1103/PhysRevE.50.54
|
[10] |
Greenberg J M. Congestion redux[J].SIAM Journal on Applied Mathematics,2004,64(4):1175-1185. doi: 10.1137/S0036139903431737
|
[11] |
Siebel F, Mauser W. On the fundamental diagram of traffic flow[J].SIAM Journal on Applied Mathematics,2006,66(4):1150-1162. doi: 10.1137/050627113
|
[12] |
Siebel F, Mauser W. Synchronized flow and wide moving jams from balanced vehicular traffic[J].Physical Review E,2006,73(6):066108. doi: 10.1103/PhysRevE.73.066108
|
[13] |
Siebel F, Mauser W, Moutari S,et al. Balanced vehicular traffic at a bottleneck[J].Mathematical and Computer Modelling,2009,49(3/4): 689-702. doi: 10.1016/j.mcm.2008.01.006
|
[14] |
Zhang P, Wong S C. Essence of conservation forms in the traveling wave solutions of higher-order traffic flow models[J].Physical Review E,2006,74(2):026109. doi: 10.1103/PhysRevE.74.026109
|
[15] |
Xu R Y, Zhang P, Dai S Q,et al. Admissibility of a wide cluster solution in anisotropic higher-order traffic flow models[J].SIAM Journal on Applied Mathematics,2007,68(2):562-573. doi: 10.1137/06066641X
|
[16] |
Zhang P, Wong S C, Shu C W. A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway[J].Journal of Computational Physics,2006,212(2):739-756. doi: 10.1016/j.jcp.2005.07.019
|
[17] |
Wong S C, Wong G C K. An analytical shock-fitting algorithm for LWR kinematic wave model embedded with linear speed-density relationship[J].Transportation Research Part B,2002,36(8):683-706. doi: 10.1016/S0191-2615(01)00023-6
|
[18] |
Karlsen K H, Risebro N H, Towers J D. Front tracking for scalar balance equations[J]. Journal of Hyperbolic Differential Equations,2004,1(1):115-148. doi: 10.1142/S0219891604000068
|
[19] |
Chen W, Wong S C, Shu C W. Efficient implementation of the shock-fitting algorithm for the Lighthill-Whitham-Richards traffic flow model[J].International Journal for Numerical Methods in Engineering,2007,74(4):554-600.
|
[20] |
Jiang R, Hu M B, Jia B,et al. Enhancing highway capacity by homogenizing traffic flow[J].Transportmetrica,2008,4(1):51-61. doi: 10.1080/18128600808685676
|
[21] |
Zhang P, Wong S C, Xu Z. A hybrid scheme for solving a multi-class traffic flow model with complex wave breaking[J].Computer Methods in Applied Mechanics Engineering,2008, 197(45/48):3816-3827. doi: 10.1016/j.cma.2008.03.003
|
[22] |
Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[A]. In:Cockburn B,Johnson C,Shu C W, et al, Eds.Numerical Approximation of Nonlinear Hyperbolic Equations[C]. Vol 1697.Lecture Notes in Mathematics.Berlin,Heidelberg:Springe,1998, 325-432.
|
[23] |
Zhang M, Shu C W, Wong G C K,et al. A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model[J].Journal of Computational Physics,2003, 191(2):639-659. doi: 10.1016/S0021-9991(03)00344-9
|