留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有延伸表面的驻点流动和传热问题的级数解

朱婧 郑连存 张欣欣

朱婧, 郑连存, 张欣欣. 具有延伸表面的驻点流动和传热问题的级数解[J]. 应用数学和力学, 2009, 30(4): 432-442.
引用本文: 朱婧, 郑连存, 张欣欣. 具有延伸表面的驻点流动和传热问题的级数解[J]. 应用数学和力学, 2009, 30(4): 432-442.
ZHU Jing, ZHENG Lian-cun, ZHANG Xin-xin. Analytic Solution of Stagnation-Point Flow and Heat Transfer Over a Stretching Sheet by Means of Homotopy Analysis Method[J]. Applied Mathematics and Mechanics, 2009, 30(4): 432-442.
Citation: ZHU Jing, ZHENG Lian-cun, ZHANG Xin-xin. Analytic Solution of Stagnation-Point Flow and Heat Transfer Over a Stretching Sheet by Means of Homotopy Analysis Method[J]. Applied Mathematics and Mechanics, 2009, 30(4): 432-442.

具有延伸表面的驻点流动和传热问题的级数解

基金项目: 国家自然科学基金资助项目(50476083)
详细信息
    作者简介:

    朱婧(1976- ),女,山西人,博士生(Tel:+86-10-62332589;E-mail:hahazhujing@sohu.com);郑连存(1957- ),男,(联系人.E-mail:liancunzheng@163.com).

  • 中图分类号: O345;O11

Analytic Solution of Stagnation-Point Flow and Heat Transfer Over a Stretching Sheet by Means of Homotopy Analysis Method

  • 摘要: 研究了在延伸表面上不可压缩二维驻点流动的动量和热量传输问题.通过一系列相似变换把轴对称和平面二维驻点流的控制方程组转化为常微分方程组,利用同伦分析方法求得了速度分布和温度分布的级数解.结果表明,当主流流速大于平面延伸的速度时,就形成了一个边界层,而当主流流速小于平面延伸的速度时,却形成一个反边界层.通过图形和表分析各个物性参数对速度边界层和温度边界层的影响.
  • [1] Crane L I. Flow past a stretching plate[J].J Appl Mech Phys(ZAMP),1970,21:645-657.
    [2] Brady J F, Acrivos A. Steady flow in a channel or tube with an accelerating surface velocity—an exact solution to the Navier-Stokes equations with reverse flow[J].J Fluid Mech,1981,112:127-150. doi: 10.1017/S0022112081000323
    [3] Jacobi A M. A scale analysis approach to the correlation of continuous moving sheet (backward boundary layer) forced convective heat transfer[J].J Heat Trans-TASME,1993,115(4):1058-1061. doi: 10.1115/1.2911362
    [4] Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[J]. Can J Chem Eng,1977,55:744-746. doi: 10.1002/cjce.5450550619
    [5] Hussaini M Y, Lakin W D, Nachman A. On similarity solutions of a boundary layer problem with an upstream moving wall[J].SIAM J Appl Math,1987,47(4):699-709. doi: 10.1137/0147048
    [6] McLeod J B, Rajagopal K R. On the uniqueness of flow of a Navier-stokes fluid due to a stretching boundary[J].Arch Ratl Mech Anal,1987,98(4):385-393. doi: 10.1007/BF00276915
    [7] Chen C K, Char M. Heat transfer of a continuous stretching surface with suction or blowing[J]. J Math Anal Appl,1988,135(2):568-580. doi: 10.1016/0022-247X(88)90172-2
    [8] Riley N, Weidman P D. Multiple solutions of the Falkner-Skan equation for flow past a stretching boundary[J].SIAM J Appl Math,1989,49(5):1350-1358. doi: 10.1137/0149081
    [9] Mahapatra T R, Gupta A S. Heat transfer in stagnation-point flow towards a stretching sheet[J].Heat and Mass Transfer,2002,38(6):517-521. doi: 10.1007/s002310100215
    [10] Khan S K. Heat transfer in a viscoelastic fluid flow over a stretching surface with heat source/sink, suction/blowing and radiation[J].Int J Heat Mass Transfer,2006,49(3/4):628-639. doi: 10.1016/j.ijheatmasstransfer.2005.07.049
    [11] Liao S J.Beyond Perturbation:Introduction to Homotopy Analysis Method[M].Boca Raton:Chapman Hall/CRC, 2003.
    [12] Liao S J, Pop I. Explicit analytic solution for similarity boundary layer equations[J].Int J Heat Mass Transter,2004,47(1):75-85. doi: 10.1016/S0017-9310(03)00405-8
    [13] Xu H, Liao S J. Series solutions of unsteady magnetohydrodynamic flows of non-Newtonian fluids caused by an impulsively stretching plate[J].J Non-Newtonian Fluid Mech,2005,129(1):46-55. doi: 10.1016/j.jnnfm.2005.05.005
    [14] Hayat T, Abbas Z, Sajid M. Series solution for the upper-convected Maxwell fluid over a porous streching plate[J].Phys Lett A,2006,358(6):396-403. doi: 10.1016/j.physleta.2006.04.117
    [15] Sajid M, Hayat T, Asghar S. On the analytic solution of the steady flow of a fourth grade fluid[J].Phys Lett A,2006,355(1):18-26. doi: 10.1016/j.physleta.2006.01.092
    [16] Abbasbandy S. The application of homotopy analysis method to nonlinear equations arising in heat transfer[J].Phys Lett A,2006,360(1):109-113. doi: 10.1016/j.physleta.2006.07.065
    [17] Hayat T, Sajid M. Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet[J].Int J Heat mass Transter,2007,50(1/2):75-84. doi: 10.1016/j.ijheatmasstransfer.2006.06.045
    [18] Tan Y, Xu H,Liao S J. Explicit series solution of travelling waves with a front of Fisher equation[J]. Chaos, Solitons and Fractals,2007,31(2):462-472. doi: 10.1016/j.chaos.2005.10.001
  • 加载中
计量
  • 文章访问数:  3116
  • HTML全文浏览量:  108
  • PDF下载量:  638
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-11-09
  • 修回日期:  2009-02-16
  • 刊出日期:  2009-04-15

目录

    /

    返回文章
    返回