Nonlinear Numerical Simulation Method for Galloping of Iced Conductor
-
摘要: 基于覆冰导线所受空气动力的非线性和导线大幅运动的几何非线性,利用虚功原理建立覆冰导线非线性运动方程,采用具有3个平动自由度和1个扭转自由度的三结点等参单元,得到基于更新Lagrange格式的覆冰导线的非线性动力学有限元方程.采用Newmark时间积分和Newton-Raphson非线性迭代法求解有限元方程.编制了相应的计算程序,利用算例验证了方法和程序的正确性.进而利用该方法通过对典型覆冰线路的数值模拟,揭示了当覆冰线路在垂直和水平方向固有频率之间存在整数倍关系的情况下,可能出现的一种新的舞动模式,其可理解为非线性动力系统的饱和现象.Abstract: Based on the principle of virtual work,an updated Lagrangian finite element formulation for the geometrical large deformation analysis of galloping of the iced conductor in an overhead transmission line was developed.In the procedure of numerical simulation,a three-node isoparametric cable element with three translational and one torsional degrees-o-f freedom at each node was employed to discretize the transmission line;and the nonlinear dynamic system equation was solved by the Newmark time integration method and the Newton-Raphson nonlinear iteration strategy.Numerical examples were employed to demonstrate the efficiency of the presented method and the developed finite element program.Furthermore,a new possible galloping mode,which may reflect the saturation phenomenon of nonlinear dynamic system,was discovered on the condition that the lowest order of vertical natural frequency of the transmission line is approximately two times of the horizontal one.
-
Key words:
- iced conductor /
- galloping /
- geometric nonlinearity /
- numerical simulation
-
[1] Den Hartog J P. Transmission line vibration due to sleet[J].Transaction AIEE,1932,51(Part 4):1074-1086. [2] Nigol O, Clarke G J. Conductor galloping and its control based on torsional mechanism[J].Ontario Hydro Research Quarterly,1974,26(2):31-41. [3] Simpson A. Determination of the natural frequencies of multi-conductor overhead transmission lines[J].Sound and Vibration,1974,20(4):417-449. [4] Yu P,Desai Y M, Shah A H,et al.Three-degree-of-freedom model for galloping—Part I:formulation[J].Journal of Engineerring Mechanics,1993,119(12):2404-2425. doi: 10.1061/(ASCE)0733-9399(1993)119:12(2404) [5] Desai Y M, Yu P, Popplewell N,et al.Finite element modeling of transmission line galloping[J].Computers and Structures,1995,57(3):407-420. doi: 10.1016/0045-7949(94)00630-L [6] 何锃,钱天虹. 覆冰三分裂导线扭控舞动的分析计算[J]. 华中理工大学学报,1998,26(10):16-18. [7] 王丽新,杨文兵,杨新华,等. 输电线路舞动的有限元分析[J]. 华中科技大学学报(城市科学版),2004,21(1):76-80. [8] 王勖成. 有限单元法[M]. 北京:清华大学出版社, 2003. [9] Veletsos A S, Darbre G R. Dynamic stiffness of parabolic cables[J].International Journal Earthquake Engineering & Structure Dynamics,1983,11(3):367-401. [10] Barbieri N, Honorato de Souza Junior O, Barbieri R. Dynamical analysis of transmission line cables—Part 2:damping estimation[J].Mechanical System and Signal Processing, 2004,18(3):671-681. doi: 10.1016/S0888-3270(02)00218-2 [11] Edwards A T, Madeyski A. Progress report on the investigation of galloping of transmission line conductors[J].Power Apparatus and Systems, Part Ⅲ Transactions of the American Institute of Electrical Engineers,1956,75(3):666-686. doi: 10.1109/AIEEPAS.1956.4499353
计量
- 文章访问数: 3456
- HTML全文浏览量: 143
- PDF下载量: 725
- 被引次数: 0