留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

组合杂交有限元方法对等参双线性Q4-平板元的粗网格精度改进

谢小平 周天孝

谢小平, 周天孝. 组合杂交有限元方法对等参双线性Q4-平板元的粗网格精度改进[J]. 应用数学和力学, 2003, 24(12): 1291-1300.
引用本文: 谢小平, 周天孝. 组合杂交有限元方法对等参双线性Q4-平板元的粗网格精度改进[J]. 应用数学和力学, 2003, 24(12): 1291-1300.
XIE Xiao-ping, ZHOU Tian-xiao. Coarse-Mesh-Accuracy Improvement of Bilinear Q4-Plane Element by the Combined Hybrid Finite Element Method[J]. Applied Mathematics and Mechanics, 2003, 24(12): 1291-1300.
Citation: XIE Xiao-ping, ZHOU Tian-xiao. Coarse-Mesh-Accuracy Improvement of Bilinear Q4-Plane Element by the Combined Hybrid Finite Element Method[J]. Applied Mathematics and Mechanics, 2003, 24(12): 1291-1300.

组合杂交有限元方法对等参双线性Q4-平板元的粗网格精度改进

基金项目: 国家天元青年基金资助项目(TY10126027)
详细信息
    作者简介:

    谢小平(1970- ),男,四川德阳人,副教授,博士(E-mail:xiaopingxie@263.net).

  • 中图分类号: O242.21

Coarse-Mesh-Accuracy Improvement of Bilinear Q4-Plane Element by the Combined Hybrid Finite Element Method

  • 摘要: 组合杂交有限元法具有增强低阶位移格式粗网格精度的内在机制.能量误差为零的组合杂交格式可获得改进的粗网络精度,而其中组合参数起着极其重要的作用.采用最简便的四边形位移\应力模式作为对协调双线性Q4-平板元的改进:协调等参双线性位移插值和纯粹常应力模式.通过调整组合参数,得到了组合杂交元的优化型.数值试验表明这种参数_调整型显著改进了协调Q4-元,达到粗网格高精度.由于应力参数可在单元水平消去,这种组合杂交改进型的计算量与协调Q4-元相当.
  • [1] ZHOU Tian-xiao.Finite element method based on combination of "saddle point" variational formulations[J].Science in China,Ser E,1997,27(1):75-87.
    [2] ZHOU Tian-xiao.Stabilized hybrid finite element methods based on combination of saddle point principles of elasticity problem[J].Math Co mput,2003,72(244):1655-1673.
    [3] ZHOU Tian-xiao,NIE Yu-feng.A combined hybrid approach to finite element schemes of high performance[J].Internat J Numer Methods Engrg,2001,51(2):181-202.
    [4] ZHOU Tian-xiao,XIE Xiao-ping.A combined hybrid finite element method for plate bending problems[J].J Comput Math,2003,21(3):347-356.
    [5] Allman D J.A compatibl,triangular element including vertex rotations for plane elasticity analysis[J].Comput Struct,1984,19(1):1-8.
    [6] Pian T H H,Sumihara K.Rational approach for assumed stress finite elements[J].Internat J Numer Methods Engrg,1984,20(9):1685-1695.
    [7] Piltner R,Taylor R L.A systematic construction of B-bar functions for linear and nonlinear mixedenhanced finite elements for plane elasticity problems[J].Internat J Numer Methods Eegrg,1999,44(5):615-639.
    [8] MacNeal R H,Harder R L.A proposed standard set of problems to test finite element accuracy[J].Finite Elements in Analysis and Design,1985,1(1):3-20.
    [9] Chen W-J,Cheung Y-K.Robust refined quadrilateral plane element[J].Internat J Numer Methods Engrg,1995,38(4):649-666.
    [10] Simo J C,Rifai M S.A class of assumed strain methods and the method of incompatible modes[J].Internat J Numer Methods Engrg,1990,29(8):1595-1638.
    [11] Pian T H H.Finite elements based on consistently assumed stresses and displacements[J].Finite Elements in Analysis and Design,1985,1(2):131-140.
    [12] CHIEN Wei-zang.Incompatible elements and generalized variational principle[A].In:Proceedings of Symposium on Finite Element Method[C].252.Beijing:Science Press; New York:Gorden and Breach,Science Publ,1982.
    [13] Brezzi F,Fortin M.Mixed and Hybrid Finite Element Methods[M].Berlin:Springer-Verlag,1992.
    [14] ZHOU Tian-xiao,XIE Xiao-ping.A unified analysis for stress/strain hybrid methods of high performance[J].Comput Methods Appl Meth Engrg,2002,191(41/42):4619-4640.
  • 加载中
计量
  • 文章访问数:  2442
  • HTML全文浏览量:  81
  • PDF下载量:  618
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-09-29
  • 修回日期:  2003-06-20
  • 刊出日期:  2003-12-15

目录

    /

    返回文章
    返回