Approximate Sampling Theorem for Bivariate Continuous Function
-
摘要: 利用加细方程的面具,给出该方程的一个近似解,并根据这个近似解构造出二维连续信号的近似采样定理.其近似采样函数是所求加细方程的近似解,它是由加细方程的面具唯一确定的逐段线性函数,且有显示的计算公式.因此可以根据需要选择加细方程的面具,从而达到控制近似采样函数的衰减速度.Abstract: An approximate solution of the refinement equation was given by its mask, and the approximate sampling theorem for bivariate continuous function was proved by applying the approximate solution. The approximate sampling function defined uniquely by the mask of the refinement equation is the approximate solution of the equation, a piece-wise linear function, and posseses an explicit computation formula. Therefore the mask of the refinement equation is selected according to one's requirement, so that one may controll the decay speed of the approximate sampling function.
-
[1] Shannon C E.A mathematical theory of communication[J].Bdll System Tech J,1948,27(3):379-423. [2] Walter G G.A sampling theory for wavelet subspace[J].IEEE Trans Inform Theory,1992,38(2):881-884. [3] 郭田德,高自友,吴士泉.基于双尺度方程近似解的适合任何连续信号的近似采样定理[J].系统科学与数学,2001,21(1):64-71. [4] 杨守志,程正兴.有限区间小波子空间上的采样定理及H2(I)空间中函数的逼近表示[J].数学物理学报,2001,21(3):410-415. [5] Daubechies I,Lagarias J.Two-scale defference equation,I:Global regularity of soutions[J].SLLAM J Math Anal,1991,22(5):1388-1410. [6] Daubechies I,Lagarias J.Twoscale difference equation-ⅡI:Local regularity,infinite products and fractals[J].SLAM J Math Anal,1991,22(4):1031-1079. [7] Lau K S,Wang J R.Characterization of solutions for two-scale dilation equations[J].SIAM J MathAnal,1995,25(4):1018-1046. [8] 程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1998. [9] Berger M A,Wang Y.Multidimensional two-scale dilation equations[A].In:Chui C K,Ed.Wavelet:Atutorial in Theory and Applications[C].New York:Academic Press,1992,295-323. [10] HE Wen-jie,LAI Ming-jun.Examples of bivariae nonseparable compactly supported orthonormal continuons wavelets[J].IEEE Trans Inform Theory,2000,9(5):949-953.
计量
- 文章访问数: 3574
- HTML全文浏览量: 77
- PDF下载量: 762
- 被引次数: 0