Random-Fuzzy Model for the Ductile/Brittle Transition
-
摘要: 对不同温度和应力状态下40Cr材料进行大子样宏观试验和细观观测,提出了一种新的材料断裂韧脆转变统计随机模糊模型。该模型认为,在统计意义上,材料的韧性断裂为空穴机制,临界空穴扩张比参数可以作为韧性断裂的判据;材料的脆性断裂可以用内嵌币状裂纹的脆性断裂模型来模拟,为此测量断裂特征长度,提出并具体计算了控制币状裂纹失稳扩张的细观临界应力强度因子;在韧脆转变区域内,这两种机理并存并相互竞争,为此提出了模糊准则。对模型参数进行了测量和统计分析,给出分布规律,给出了计算断裂特征的概率模型。计算了韧脆转变区域内的细观机制变化和宏观响应。结果表明,该模型及分析方法可以很好地模拟应力状态及温度对韧脆转变的影响。Abstract: A large sample of experiments was carried out to study influence of stress triaxiality and temperature on the growth of micro voids and the ductile/brittle transition(DBT)behavior of 40Cr steel.A random-fuzzy model was put forward for the transition.It is assumed that the ductile fracture is controlled by the micro void mechanism,and the critical void growth ratio can be used as the criterion of ductile fracture.The brittle fracture is modeled by an embedded penny crack.A micro stress intensity and the fracture characteristic length of the brittle fracture was then presented and calculated. The DBT is completed by the two mechanisms,which exists in the fracture of all specimens simultaneously.The distributions of model parameters were measured experimentally.A random model and a random-fuzzy model for DBT were presented.The comparison between the calculated and experimental results shows that the random-fuzzy model can model the DBT satisfactorily.
-
Key words:
- ductile/brittle transition /
- fracture criterion /
- randomness /
- fuzziness
-
[1] 郑长卿.韧性断裂细观力学的初步研究及其应用[M].西安:西北工业大学出版社,1988. [2] 郑长卿.裂纹体与无裂纹体断裂理论研究文集[M].西安:西安工业大学出版社,1991. [3] Pitchie R O, Knoff J F, Rice J R. On the relationship between critical tensile stress and fracture toughness in mild steel[J].J Mech Phys Solids,1973,2(2) :195-206. [4] 岳珠峰,吕震宙,郑长卿.40Cr钢韧脆转变区域的一种随机模型[J].材料科学与工艺,1997,5(2):129-132. [5] 吕震宙,岳珠峰,郑长卿.金属材料细观韧性断裂的随机模糊分析[J].金属学报,1996,32(11):1258-1264. [6] YUE Zhu-feng,ZHENG Chang-qing. Effect to triaxiality and temperature on void growth in a smooth and notched 40Cr steel bar[J]. Theor Appl Fract Mech,1995,22(2):139-150. [7] Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress field[J]. J Mech Phys Solids, 1969,17(2) :201-217. [8] David Brock. Elementary Engineering Fracture Mechanics [M]. Third revised edition. Hangue: Martinus Nijhoff Publisher, 1982.
计量
- 文章访问数: 2388
- HTML全文浏览量: 132
- PDF下载量: 604
- 被引次数: 0