留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

参数激励圆柱形容器中的非线性Faraday波

菅永军 鄂学全 柏威

菅永军, 鄂学全, 柏威. 参数激励圆柱形容器中的非线性Faraday波[J]. 应用数学和力学, 2003, 24(10): 1057-1068.
引用本文: 菅永军, 鄂学全, 柏威. 参数激励圆柱形容器中的非线性Faraday波[J]. 应用数学和力学, 2003, 24(10): 1057-1068.
JIAN Yong-jun, E Xue-quan, BAI Wei. Nonlinear Faraday Waves in a Parametrically Excited Circular Cylindrical Container[J]. Applied Mathematics and Mechanics, 2003, 24(10): 1057-1068.
Citation: JIAN Yong-jun, E Xue-quan, BAI Wei. Nonlinear Faraday Waves in a Parametrically Excited Circular Cylindrical Container[J]. Applied Mathematics and Mechanics, 2003, 24(10): 1057-1068.

参数激励圆柱形容器中的非线性Faraday波

基金项目: 国家自然科学基金资助项目(19772063,19772068)
详细信息
    作者简介:

    菅永军(1974- ),男,内蒙古巴彦淖尔盟人,博士(E-mail:jianyongjun@yahoo.com.cn).

  • 中图分类号: O353.2

Nonlinear Faraday Waves in a Parametrically Excited Circular Cylindrical Container

  • 摘要: 在柱坐标系下,通过奇异摄动理论的多尺度展开法求解势流方程,研究了垂直强迫激励圆柱形容器中的单一模式水表面驻波模式。假设流体是无粘、不可压且运动是无旋的,在忽略了表面张力的影响下,用两变量时间展开法得到一个具有立方项以及底部驱动项影响的非线性振幅方程。对上述方程进行了数值计算,计算的结果显示了在不同驱动振幅和驱动频率下,会激发不同自由水表面驻波模式,从等高线的图像来看,和以往的实验结果相当吻合。
  • [1] Faraday M. On the forms and states assumed by fluids in contact with vibrating elastic surfaces [J].Phil Trans R Soc Lond, 1831,121: 319-340.
    [2] Benjamin T B, Ursell F. The stability of the plane free surface of a liquid in vertical periodic motion [J]. Proc R Soc Lond A, 1954,255: 505-515.
    [3] Miles J W. Nonlinear surface wave in closed basins [J]. J Fluid Mech, 1976,75:419-448.
    [4] Meron E, Procaccia I. Low dimensional chaos in surface waves: Theoretical analysis of an experiment [J]. Phys Rev A, 1986,34: 3221-3237.
    [5] Larrza A, Putterman S. Theory of non-propagating surface solitons[J]. J Fluid Mech, 1984,148:443-449.
    [6] 周显初.非传播孤立波和表面张力[J].力学学报,1998,30(6):672-675.
    [7] Miles J W. Nonlinear Faraday resonance [J]. J Fluid Mech, 1984, 83: 153-158.
    [8] Miles J W. Parametrically excited solitary waves [J]. J Fluid Mech, 1984,148: 451-460.
    [9] E Xue-quan, GAO Yu-xin. Ordered and chaotic modes of surface wave patterns in a vertically oscillating fluid [J]. Communications in Nonlinear Sciences & Numerical Simulation, 1996,1(2): 1-6.
    [10] E Xue-quan, GAO Yu-xin. Visualization of surface wave patterns of a fluid in vertical vibration [A].In: Proceedings of the Fourth Asian Symposium on Visualization[C]. 1996, Beijing, 653-658.
    [11] 高宇欣,鄂学全.微幅振荡流体表面波图谱显示方法[J].实验力学,1998,13(3):326-333.
    [12] Ciliberto S, Gollub J P. Chaotic mode competition in parametrically forced surface waves [J]. J Fluid Mech, 1985,158: 381-398.
    [13] Nayfeh A H. Surface waves in closed basins under parametric and internal resonances [J]. Phys Fluids, 1987, 30: 2976-2983.
    [14] Feng Z C, Sethna P R. Symmetry-breaking bifurcations in resonant surface waves [J]. J Fluid Mech, 1989, 199: 495-518.
    [15] Nagata M. Nonlinear Faraday resonance in a box with a square base [J]. JFluid Mech, 1989,209:265-284.
    [16] Edwards W S, Fauve S. Patterns and quasi-patterns in the Faraday experiment [J]. JFluidMech,1994,278: 123-148.
    [17] Umeki M, Kambe T. Nonlinear dynamics and chaos in parametrically excited surface waves [J]. J Phys Soc Japan, 1989,58: 140-154.
  • 加载中
计量
  • 文章访问数:  2703
  • HTML全文浏览量:  118
  • PDF下载量:  604
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-03-30
  • 修回日期:  2003-05-16
  • 刊出日期:  2003-10-15

目录

    /

    返回文章
    返回