Difference Scheme and Numerical Simulation Based on Mixed Finite Element Method for Natural Convection Problem
-
摘要: 研究自然对流换热问题,通过对于空间变量采用有限元离散而对于时间变量用差分离散,导出一种基于混合有限元法的最低阶的差分格式,这种格式可以同时求出流体的速度、温度和压力的数值解,并给出了模拟方腔流的自然换热的数值例子。Abstract: The non stationary natural convection problem is studied. A lowest order finite difference scheme based on mixed finite element method for non stationary natural convection problem, by the spatial variations discreted with finite element method and time with finite difference scheme was derived, where the numerical solution of velocity, pressure, and temperature can be found together, and a numerical example to simulate the close square cavity is given, which is of practical importance.
-
[1] 傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1994. [2] 忻孝康,刘儒勋,蒋伯诚.计算流体动力学[M].长沙:国防科技大学出版社,1989. [3] Paquet L.The boussinesq equations in presence of thermocapillarity at some part of the boundary[A].In:Lumer G,Nicaise S,Shulze B W Eds.Partial Differential Equations,Mathematical Research[C].82,Berlin:Akademie Verlag,266-278. [4] Girault V,Raviart P A.Finite Element Methods for Navier-Stokes Equations[M].Berlin:Springer-Verlag,1986. [5] Adams R A.Sobolev Spaces[M].New York:Academic Press,1975. [6] 罗振东.非线性发展方程和热传导-对流方程的混合有限元分析与研究[D].合肥:中国科学技术大学博士论文,1997. [7] Brezzi F,Douglas Jr J,Marrini L D.Two families of mixed finite elements for second order eliptic problems[J].Numer Math,1985,47(2):217-235. [8] Ciarlet P G.The Finite Element Method for Elliptic Problems[M].Amsterdam:North-Holland,1978. [9] 罗振东.有限元混合法理论基础及其应用,发展与应用[M].济南:山东教育出版社,1996.
计量
- 文章访问数: 2568
- HTML全文浏览量: 174
- PDF下载量: 499
- 被引次数: 0