留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

T型分叉血管的定常/脉动流动和大分子传质

李丁 温功碧

李丁, 温功碧. T型分叉血管的定常/脉动流动和大分子传质[J]. 应用数学和力学, 2003, 24(5): 471-483.
引用本文: 李丁, 温功碧. T型分叉血管的定常/脉动流动和大分子传质[J]. 应用数学和力学, 2003, 24(5): 471-483.
LI Ding, WEN Gong-bi. The Steady/Pulsatile Flow and Macromolecular Transport in T-Bifurcation Blood Vessels[J]. Applied Mathematics and Mechanics, 2003, 24(5): 471-483.
Citation: LI Ding, WEN Gong-bi. The Steady/Pulsatile Flow and Macromolecular Transport in T-Bifurcation Blood Vessels[J]. Applied Mathematics and Mechanics, 2003, 24(5): 471-483.

T型分叉血管的定常/脉动流动和大分子传质

基金项目: 国家自然科学重点基金资助项目(10002003)
详细信息
    作者简介:

    李丁(1973- ),辽宁鞍山人,硕士;温功碧(1935- ),女,四川人,教授(E-mail:wengb@mech.pku.edu.cn).

  • 中图分类号: R318.01

The Steady/Pulsatile Flow and Macromolecular Transport in T-Bifurcation Blood Vessels

  • 摘要: 采用计算流体动力学方法,数值求解了T型分叉流动的定常/脉动流场和低密度脂蛋白(LDL)以及血清白蛋白(Albumin)的浓度分布。计算了雷诺数、主管和支管的流量比等参数对流场和大分子传质的影响,计算结果表明,流体动力学因素影响大分子的分布和跨壁渗透,在动脉硬化的发生和发展过程中起着重要的作用。在流动发生分离处,即支管入口外侧壁面剪应力变化最剧烈,这儿LDL和Albumin的壁面浓度变化也是最剧烈,是动脉硬化危险区。
  • [1] Back L H, Liem T K, Kwack E Y. et al. Flow measurements in a highly curved atherosclerotic coronary artery cast on man[J]. J Biomechanical Engineering,1992,114(2):232-240.
    [2] Perktold K, Resch M. Numerical flow studies in human carotid artery bifurcations: basic discussion of the geometric factor in atherogenesis[J]. J Biomedical Eng,1990,12(1):111-123.
    [3] Fry D L. Certain histological and chemical responses of the vascular interface of acutely induced mechanical stress in the aorta of the dog[J]. Circulation Research,1969,24(1):93-109.
    [4] Fry D L, Vaishnav R N. Mass transport in the arterial wall basic hemodynamics and its role[A].In:Patel D J, Vaishnav R N Eds. Disease Processes[C],University Park Press,1980,77-95.
    [5] Liepsch D, Moravec S, Rastogi A K, et al. Measurement and calaulations of laminar flow in a ninety degree bifurcation[J]. J Biomechanics,1982,15(7):473-485.
    [6] Resch M,Perktold K,Reinfried O P. Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation[J]. J Biomechanics,1991,24(6):409-420.
    [7] Kawaguti M, Hamano A. Numerical study of bifurcating flow of a viscous fluid[J]. J Phys Soc (Japan),1979,46(4):1360-1365.
    [8] Kawaguti M, Hamano A. Numerical study of bifurcating flow of a viscous fluid-Ⅱ:Pulsatile flow[J]. J Phys Soc (Japan),1980,49(2):817-824.
    [9] O'Brien V, Ehrlich L W. Simulation of unsteady flow at renal branches[J]. J Biomechanics,1977,10(10):623-631.
    [10] Lutz R J, Hsu L, Menawat A. Comparision of steady and pulsatile flow in a double branching arterial model[J]. J Biomechanics,1983,16(9):753-766.
    [11] Fernandez R C, DeWitt K J, Botwin M R. Pulsatile flow through a bifurcation with applications to arterial disease[J]. J Biomechanics,1976,9(9):575-580.
    [12] Khodadadi J M, Vlachos N S, Liepsch D. LDL measurements and numerical prediction of pulsatile laminar flow in a plane 90-degree bifurcation[J]. J Biomechanical Engineering,1988,110(2):129-136.
    [13] Rappitisch G, Perktold K. Pulsatile albumin transport in large arteries: A numerical simulation study [J]. J Biomechanicl Engeering,1996,118(4):511-519.
    [14] Barter P J, Rye K. A high density lipoproteins and coronary heart disease[J]. Atherosclerosis,1996,121(1):1-12.
    [15] Ojha M. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model[J]. J Biomechanics,1983,26(12):1377-1388.
    [16] He X Y, Ku D N. Pulsatile flow in the human left coronary artery bifurcation: average conditions[J]. J Biomechanical Engineering,1996,118(1):74-82.
    [17] Back L H, Liem T K, Kwack E Y, et al. Flow measurements in a highly curved atherosclerotic coronary artery cast of man[J]. J Biomechanical Engineering,1992,114(2):232-240.
    [18] Karino T, Deng X Y, Naiki T. Flow-dependent concentration polarization of lipoproteins at the blood-endothelium boundary[A].In:Hochmuth R M,Langrana N A,Hefzy M S Eds.Proceedings of the 1995 Bioengineering Conference[C].Berlin,Heidelberg,New York:Springer-Verlag,1995.
    [19] Jo H, Dull R O, Hollis T M, et al. Endothelial albumin permeability is shear dependent, time dependent and reversible[J]. American J Physiology,1991,260:H1992-H1996.
    [20] Friedman M H,Peters O J,Bargeron C B,et al. Shear-dependent thickening of the human arterial intima[J]. Atherosclerosis,1986,60(2):161-170.
    [21] Rappitsch G, Pektold K. Computer simulation of convective diffusion processes in large arteries[J]. J Biomechanics,1996,29(2):207-215.
    [22] Langeler E G, Ineke S H, Victor W M,et al.Passage of low density lipoproteins through monolayers of human arterial endothelidal cells-effects of vasoactive substance in an in vitro[J]. Arteriosclerosis,1989,9(4):550-559.
  • 加载中
计量
  • 文章访问数:  2507
  • HTML全文浏览量:  104
  • PDF下载量:  767
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-12-28
  • 修回日期:  2002-12-08
  • 刊出日期:  2003-05-15

目录

    /

    返回文章
    返回