On the Well Posedness of Initial Value Problem for Euler Equations of Incompressible Inviscid Fluid(Ⅱ)
-
摘要: 以分层理论为基础,讨论了不可压、无粘流体的Euler方程的形式可解性,并给出了各类不适定初值问题存在形式解的条件与计算方法。并讨论了超曲面上和超平面上初值问题的适定性并给出了存在不唯一解的例证。Abstract: The solvability of the Euler equations about imcompressible inviscid flow based on the stratification theory is discussed.And the conditions for the existence of formal solutions and the methods are presented for calculating all kinds of ill-posed initial value problems.Two examples are given as the evidence that the initial problems at the hyper surface does not exist any unique solution.
-
Key words:
- Euler equation /
- ill-posed problem /
- formal solution /
- equation secondaire
-
[1] SHIH Wei-hui.Solutions Analytiques de Quelques Equations aux Derives Partielles en Mecanique des Fluides[M].Paris: Hermann,1992. [2] JIU Quan-sen,GU Jin-sheng.Some estimates on 2-D Euler equations[J].Advances in Mathematics,1999,28(1):55-63. [3] 酒全森.二维Eluer方程的弱解存在性[J].汕头大学学报(自然科学版),1995,10(2):28-35. [4] 尹会成,仇庆久.关于不可压缩的Eluer方程的一类解[J].数学年刊A辑(中文版),1996,(4):495-506. [5] 沈臻.关于不可压、无粘流体的Eluer方程初值问题的适定性(Ⅰ)[J].应用数学和力学,2003,24(5):484-492. [6] Landau J,Lifchitz E.Mecanique des Fluides[M].Moscou:Editions Mir,1971. [7] 施惟慧,陈达段,何幼桦.分层理论与非线性偏微分方程基础[M].上海:上海大学出版社,2001. [8] Baouendi S,Gulaouic C.Probeme de Cauchy[A].In:Seminaire Schwarz[C].Parie: Parie 11,Expose 22.1997,97-117. [9] Ehresmann Ch.Introduction a la theorie de structures infinitesimales et des pseudo-groupes de lie[A].In:Geometrie Diffierentielle de Collques du C N R S[C].Strasdourg:Colloques du C N R S,1953,97-117.
计量
- 文章访问数: 2607
- HTML全文浏览量: 181
- PDF下载量: 644
- 被引次数: 0