Random Variable With Fuzzy Probability
-
摘要: 研究了第二类模糊随机变量——具有清晰事件、模糊概率的随机变量的数学描述。在区间概率的基础上,利用模糊分解定理给出了概率模糊数集是可行的条件,进一步给出了具有模糊概率的随机变量及模糊概率随机变量的模糊分布函数和模糊分布列的定义和性质。提出并证明了具有模糊概率运算封闭性的模糊概率分解定理。研究了模糊概率随机变量的模糊数学期望和模糊方差的定义和性质。所有关于模糊概率随机变量的数学描述都具有模糊概率运算的封闭性,这为完善模糊概率的运算方法打下了基础。Abstract: Mathematic description about the second kind fuzzy random variable namely the random variable with crisp event-fuzzy probability was studied. Based on the interval probability and using the fuzzy resolution theorem,the feasible condition about a probability fuzzy number set was given,go a step further the definition and characters of random variable with fuzzy probability(RVFP) and the fuzzy distribution function and fuzzy probability distribution sequence of the RVFP were put forward.The fuzzy probability resolution theorem with the closing operation of fuzzy probability was given and proved. The definition and characters of mathematical expectation and variance of the RVFP were studied also. All mathematic description about the RVFP has the closing operation for fuzzy probability,as a result,山e foundation of perfecting fuzzy probability operation method is laid.
-
Key words:
- random variable /
- fuzzy probability /
- probability /
- mathematical expectation /
- variance
-
[1] 武小悦,沙基昌.具有Fuzzy概率的Fuzzy可靠性问题的求解途径[J].模糊系统与数学,1997,11(3):8-11. [2] 崔玉玲,李延杰.清晰事件模糊概率(CF型)模糊可靠性研究[J].系统工程理论与实践,1991,11(6):41-45. [3] Dubois D,Prade H.Fuzzy Sets and System:Theory and Applications[M].New York:Academic Press,1980. [4] 张跃,王光远.模糊随机动力系统理论[M].贵阳:贵州科学技术出版社,1995,45-62. [5] 王柏生.单源模糊数及其运算[J].模糊系统与数学,1998,12(2):49-53. [6] 钟佑明,吕恩琳,王应芳.区间概率随机变量及其数字特征[J].重庆大学学报,2001,24(1):24-27. [7] 王明文.基于概率区间的Bayes决策方法[J].系统工程理论与实践,1997,17(11):79-80.
计量
- 文章访问数: 2415
- HTML全文浏览量: 139
- PDF下载量: 588
- 被引次数: 0