留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义Phillips模式非线性不稳定的饱和问题(Ⅱ)——扰动能量及位涡拟能的下界估计

张瑰 项杰

张瑰, 项杰. 广义Phillips模式非线性不稳定的饱和问题(Ⅱ)——扰动能量及位涡拟能的下界估计[J]. 应用数学和力学, 2002, 23(11): 1195-1202.
引用本文: 张瑰, 项杰. 广义Phillips模式非线性不稳定的饱和问题(Ⅱ)——扰动能量及位涡拟能的下界估计[J]. 应用数学和力学, 2002, 23(11): 1195-1202.
ZHANG Gui, XIANG Jie. Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model(Ⅱ)-The Lower Bound on the Disturbance Energy and Potential Enstrophy to the Nonlinearly Unstable Basic Flow[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1195-1202.
Citation: ZHANG Gui, XIANG Jie. Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model(Ⅱ)-The Lower Bound on the Disturbance Energy and Potential Enstrophy to the Nonlinearly Unstable Basic Flow[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1195-1202.

广义Phillips模式非线性不稳定的饱和问题(Ⅱ)——扰动能量及位涡拟能的下界估计

基金项目: 国家自然科学基金资助项目(40075014);解放军理工大学理学院青年科研经费资助项目
详细信息
    作者简介:

    张瑰(1973- ),女,安徽人,博士.

  • 中图分类号: P433;O351

Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model(Ⅱ)-The Lower Bound on the Disturbance Energy and Potential Enstrophy to the Nonlinearly Unstable Basic Flow

  • 摘要: 在Arnol'd第二定理的范围内进一步讨论广义Phillips模式非线性不稳定的饱和问题,得到了基流不稳定时扰动能量及位涡拟能的下界估计。
  • [1] 张瑰.广义Phillips模式的非线性稳定性判据[J].空军气象学院学报,1999,20(2):133-143.
    [2] 张瑰,项杰,李东辉.广义Phillips模式非线性不稳定的饱和问题(Ⅰ)——基流不稳定时扰动演变的上界估计[J].应用数学和力学,2002,23(1):73-81.
    [3] Shepherd T G. Nonlinear saturation of baroclinic instability,Part-one:the two-layer model[J].Journal of the Atmospheric Sciences,1998,45(14):2014-2025.
    [4] Shepherd T G. Nonlinear saturation of baroclinic instability,Part-two:Continuously-statified fluid[J].Journal of the Atmospheric Sciences,1989,46(7):888-907.
    [5] Shepherd T G. Nonlinear saturation of baroclinic instability,part-three:bounds on the energy[J].Journal of the Atmospheric Sciences,1993,50(16):2697-2709.
    [6] MU Mu.Nonlinear stability theorem of two-dimensional quasi-geostrophic motions,geophys, Astrophy[J].Fluid Dynamics,1992,65(1):57-76.
    [7] Paret J,Vanneste J.Nonlinear saturation of baroclinic instability in a three-layer model[J].Journal of the Atmospheric Sciences,1996,53(20):2905-2917.
    [8] Cho H R, Shepherd T G, Vladimirov V A. Application of the direct Liapunov method to the problem of symmetric stability in the atmosphere[J].Journal of the Atmospheric Sciences,1993,50(6):822-834
    [9] MU Mu,Shepherd T G, Swanson K. On nonlinear symmetric stability and the nonlinear saturation of symmetric instability[J].Journal of the Atmospheric Sciences,1996,53(20):2918-2923.
    [10] ZENG Qing-cun. Variational Principle of instability of atmosphic motions[J].Adv Atmos Sci,1989,6(2):137-172.
    [11] XIANG Jie,MU Mu.Lower bound of disturbances for the nonlinearly unstable basic flow in the phillips model[A].In:CHINE Wei-zang, Ed.Proceeding of the Third International Conference on Nonlinear Mechanics[C].Shanghai,1998:548-553.
  • 加载中
计量
  • 文章访问数:  2070
  • HTML全文浏览量:  61
  • PDF下载量:  724
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-11-29
  • 修回日期:  2002-05-25
  • 刊出日期:  2002-11-15

目录

    /

    返回文章
    返回