Research of the Periodic Motion and Stability of Two-Degree-of-Freedom Nonlinear Oscillating Systems
-
摘要: 运用Liapunov函数方法,对一类两自由度非线性振动系统周期运动及其稳定性进行了研究,得到了存在唯一渐近稳定的周期解的充分条件.
-
关键词:
- 非线性振动 /
- 周期运动 /
- Liapunov函数 /
- 周期解
Abstract: The periodic motion and stability for a class of two-degree-of-freedom nonlinear oscilating systems are studied by using the method of Liapunov function. The sufficient conditions which guarantee the existence,uniqueness and asymptotic stability of the periodic solutions are obtained.-
Key words:
- nonlinear oscillation /
- periodic motion /
- Liapunov function /
- periodic system
-
[1] Nayfey A H,Mook D T. Nonlinear Oscillations[M]. New York:A Wiley Interscience Publication,1979,92-98. [2] 陈予恕. 非线性振动系统的分岔理论和混沌理论[M]. 北京:高等教育出版社,1993,180-198. [3] 丁皓江,陈伟球,刘钟. 球壳和柱壳振动中的一类方程组的求解[J]. 应用数学和力学,1995,16(1):1-13. [4] 凌复华. 非线性振动系统周期解的数值分析[J]. 应用数学和力学,1983,4(4):489-505. [5] 凌复华. 非线性振动系统周期运动及其稳定性的数值研究[J]. 力学进展,1986,16(1):14-27. [6] Rosenberg R M,Atkinson C P. On the natural modes and their stability in nonlinear two-degree-of-freedom system[J]. J Appl Mech,1959,26(3):377-385. [7] Hara T. On the uniform ultimate boundedness of the solutions of certain third order differential equations[J]. J Math Anal Appl,1981,80(5):533-544. [8] WANG Lian,WANG Mu-qiu. On periodic solution of higher order nonlinear periodical system[J]. Ann Differential Equations,1987,3(1):15-26. [9] Lasall J,Lefschtz S. Stability by Liapunov's Direct Method With Application[M]. New York:Academic Press,1961,121-123.
计量
- 文章访问数: 2658
- HTML全文浏览量: 156
- PDF下载量: 733
- 被引次数: 0