留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

存在滑移时两圆球间的幂律流体挤压流动

黄文彬 徐泳 练国平 李红艳

黄文彬, 徐泳, 练国平, 李红艳. 存在滑移时两圆球间的幂律流体挤压流动[J]. 应用数学和力学, 2002, 23(7): 722-728.
引用本文: 黄文彬, 徐泳, 练国平, 李红艳. 存在滑移时两圆球间的幂律流体挤压流动[J]. 应用数学和力学, 2002, 23(7): 722-728.
HUANG Wen-bin, XU yong, LIAN Guo-ping, LI Hong-yan. Squeeze Flow of a Power-Law Fluid Between Two Rigid Spheres With Wall Slip[J]. Applied Mathematics and Mechanics, 2002, 23(7): 722-728.
Citation: HUANG Wen-bin, XU yong, LIAN Guo-ping, LI Hong-yan. Squeeze Flow of a Power-Law Fluid Between Two Rigid Spheres With Wall Slip[J]. Applied Mathematics and Mechanics, 2002, 23(7): 722-728.

存在滑移时两圆球间的幂律流体挤压流动

基金项目: 国家自然科学基金资助项目(19972075);联合利华(Unilever PLC)资助项目
详细信息
    作者简介:

    黄文彬(1934- ),男,福建福州人,教授.(E-mail:mech@east.cau.edu.cn)

  • 中图分类号: O347.7;O373

Squeeze Flow of a Power-Law Fluid Between Two Rigid Spheres With Wall Slip

  • 摘要: 基于Reynolds润滑理论分析了壁面滑移对任意圆球颗粒间幂律流体的挤压流动的影响。研究表明有壁面滑移时挤压流动的粘性力可通过引进本文定义的滑移修正系数分离出无滑移解。推导出的挤压力滑移修正系数是一积分表达式,依赖于滑移参数、幂律指数、球间隙和积分上限。一般地壁面滑移导致粘性力减小,粘性力的减小量随幂律指数的增大而增大,表明壁面滑移对剪切增稠流变材料有更大的影响;粘性力的减小量还随着滑移参数的增大而增加,而这恰与假设相符合;粘性力的减小量又随球间隙减小或积分上限的增大(从液桥情况到完全浸渍)而减小直到趋于常数,这一特性在离散元模拟时可以有效地减少计算量。
  • [1] Bird R B,Armstrong R C,Hassager O.Dynamics of Polymeric Liquids[M].New York:Wiley,1977,19-21.
    [2] Scott J R.Theory and application of the parallel plate viscometer[J].Trans Ins Rubber Ind,1931,7(2):169-186.
    [3] Davis A M J,Frenkel A L.Cylindrical liquid bridges squeezed between parallel plates:exact Stokes flow solutions and hydrodynamic forces[J].Phys Fluids A,1992,4(6):1105-1109.
    [4] Laun H M,Rady M,Hassager O.Analytical solutions for squeeze flow with partial wallslip[J].Journal of Non-Newtonian Fluid Mechanics,1999,81(1-2):1-15.
    [5] Adams M J,Edmondson B.Forces between particles in continuous and discrete liquid media[A].In:B J Briscoe,M J Adams Eds.Tribology in Particulate Technology[C].1987,154-172.
    [6] Rodin G J.Squeeze film between two spheres in a power-law fluid[J].Journal of Non-Newtonian Fluid Mechanics,1996,63(2-3):141-152.
    [7] Xu Y,Huang W,Lian G.On the normal viscous force between two colliding spheres with an interstitial power-lawliquid[A].In:Kishino Ed.Pow ders & Grains 2001(4th International Conference on Micromechanics of Granular Media)[C].Lisse:Swets & Zeitlinger,2001,611-614.
    [8] Lian G,Xu Y,Huang W,et al.On the squeeze flow of power-law fluid between rigid spheres[J].Journal of Non-Newtonian Fluid Mechanics,2001,100(2-3):151-164.
    [9] Mooney M.Explicit formulae for slip and fluidity[J].Journal of Rheology,1931,2(2):210-222.
    [10] Atwood B T,Schowalter W R.Measurement of slip at the wall during the flow of high density polyethylene through a rectangular conduit[J].Rheol Acta,1989,28(2):134-146.
    [11] Kraynik A M,Schowalter W R.Slip at the wall and extrudate rough ness with aqueous solutions of polyvinyl alcohol and sodium borate[J].Journal of Rheology,1981,25(1):95-114.
    [12] Ramamurthy A V.Wall slip in viscous fluids and influence of material construction[J].Journal of Rheology,1986,30(2):337-357.
    [13] Melrose J R,Van Vliet J H,Ball R C.Continuous shear thickening and colloid surfaces[J].Physics Review Letter,1996,77(22):4660-4663.
    [14] Lian G,Thornton C,Adams M J.Discrete particle simulation of agglomerate impact coalescence[J].Chem Engng Sci,1998,53(19):3381-3391.
    [15] Rao I J,Rajagopal K R.The effect of slip boundary condition on the flow of fluids in a channel[J].Acta Mechanica,1999,135(1-2):113-126.
    [16] Joshi Y M,Lele A K,Mashelkar R A.A unified wall slip model[J].Journal of Non-Newtonian Fluid Mechanics,2000,94(2-3):135-149.
    [17] Cohen Y,Metzner A B.Apparent slip flow of polymer solutions[J].Journal of Rheology,1985,29(1):67-102.
  • 加载中
计量
  • 文章访问数:  2687
  • HTML全文浏览量:  112
  • PDF下载量:  754
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-10-09
  • 修回日期:  2002-03-28
  • 刊出日期:  2002-07-15

目录

    /

    返回文章
    返回