Generalized Reciprocal Theorems and Their Applications
-
摘要: 推广Betti倒易定理的概念,建立了非耦联系统和耦联系统的广义倒易定理,它们适用于具有不同本构关系的两个变形体。当该两变形体的本构关系相同且为线弹性时,该非耦联系统的广义倒易定理即成为Betti倒易定理。同时,应用该两个广义倒易定理于弹性力学中的模拟计算。Abstract: Generalized reciprocal theorems of non-coupled and coupled systems, which are valid for two deformed bodies with different constitutive relations are established by generalizing the idea of Betti's reciprocal theorem. When the constitutive relations of the two deformed bodies are all alike and linear elastic, the generalized reciprocal theorem of non-coupled systems just becomes Betti's. Meanwhile, the generalized reciprocal theorems are applied to simulate calculations in elasticity.
-
Key words:
- reciprocal theorem /
- generalized reciprocal theorem /
- non-coupled system /
- coupled system
-
[1] 付宝连.光测弹性理论的变分原理[J].东北重型机械学院学报,1989,13(4):68-71. [2] 付宝连,崔振山,祖承德.光测弹性理论中的耦联有限元法[J].东北重型机械学院学报,1991,15(3):259-263. [3] 付宝连.光测弹性力学中耦联系统的变分原理[J].应用数学和力学,1994,15(1):37-47. [4] FU Bao-lian.Simulated variational principles for structural experiments[A].In:Y K Cheung.A K H Kwan Eds.The Fifth International Conference on Tall Buildings[C].Hong Kong,December,9-11,1998,Hong Kong:China Translation and Printing Services Ltd,1998,2,564-569. [5] 付宝连.金属成形工艺相似非耦联系统的模拟变分原理和广义模拟变分原理[J].工程力学,1999,16(2):52-59. [6] 钱伟长,叶开阮.弹性力学[M].北京:科学出版社,1980. [7] 付宝连.功的互等定理和线弹性变分原理[J].应用数学和力学,1989,10(3):253-258. [8] Timoshenko S P,Goodier J N.Theory of Elasticity[M].Third Edition.McGraw-Hill Book Company,1990.
计量
- 文章访问数: 2017
- HTML全文浏览量: 80
- PDF下载量: 782
- 被引次数: 0