On Numerical Solutios of Periodically Perturbed Conservative Systems
-
摘要: 讨论了周期摄动非线性守恒系统。利用Hadamard定理证明了在适当的条件下连续问题解的存在唯一性。并在均匀网格上对方程作了离散化,给出了相应的离散问题具有唯一解的结果。最后讨论了数值解的精度及有关算法。Abstract: A nonlinear perturbed conservative system is discussed. By means of Hadamard. stheorem, the existence and uniqueness of the solution of the continuous problem are proved. When the equation is discreted on the uniform meshes, it is proved that the corresponding discrete problem has a unique solution. Finally, the accuracy of the numerical solution is considered and a simple algorithm is provided for solving the nonlinear difference equation.
-
Key words:
- nonlinear system /
- numerical solution /
- uniqueness and existence /
- algorithm
-
[1] Lazer A C,Sanches D A.On periodically perturbed conservative systems[J].Mich Math Ⅰ,1969,16(2):193-200. [2] Amaral L,Pera M P.On periodic solutions of nonconservative systems[J].Nonlinear Analysis,1982,6(7):733-743. [3] Brown K J,Lin S S.Periodically perturbed conservative systems and a global inverse function theorem[J].Nonlinear Analysis,1980,4(1):193-201. [4] Meyer G H.On solving nonlinear equations with a one-parameter operator imbedding[J].SIAM J Numer Anal,1968,5(4):739-752. [5] Lazer A C.Application of Lemma on bilinear forms to a problem in nonlinear Oscillations[J].Proc Amer Math Soc,1972,33(1):89-94. [6] Dunford V,Schwartz J T.Linear Operator[M].Vol Ⅱ,New York:Interscience,1963,1289. [7] Hadamard J.Sur les transformation ponctuelles[J].Bull Cos Math Fr,1906,34(1):71-84. [8] Li W,Shen Z.A construction proof of the periodic solution of Duffing equation[J].Chinese Science Bulletin,1997,22(42):1591-1594. [9] Plastick R.Homeomorphism between Banach space[J].Trans Amer Math Soc,1974,200(1):169-183. [10] Raduiescu M,Raduiescu S.Global inversion theorems and applications to differential equations[J].Nonlinear Analysis,1980,4(4):951-965. [11] Shen Z.On the periodic solution to the Newtonian equation of motion[J].Nonlinear Analysis,1989,13(2):145-149.
计量
- 文章访问数: 2575
- HTML全文浏览量: 104
- PDF下载量: 733
- 被引次数: 0