Quasi-Static and Dynamical Analysis for Viscoelastic Timoshenko Beam With Fractional Derivative Constitutive Relation
-
摘要: 利用粘弹性材料的三维分数导数型本构关系,建立粘弹性Timoshenko梁的静、动力学行为研究的数学模型;分析Timoshenko梁在阶跃载荷作用下的准静态力学行为,得出了问题的解析解,考察了一些材料参数对梁的挠度的影响。基于模态函数讨论了粘弹性Timoshenko梁在横向简谐激励作用下的动力响应,并考察了剪切和转动惯性对梁振动响应的影响。
-
关键词:
- 粘弹性Timoshenko梁 /
- 分数导数型本构关系 /
- 弱奇异性Volterra积分-微分方程 /
- 动力响应
Abstract: The equations of motion governing the quasi-static and dynamical behavior of a viscoelastic Timoshenko beam are derived.The viscoelastic material is assumed to obey a three-dimensional fractional derivative constitutive relation.The quasi-static behavior of the viscoelastic Timoshenko beam under step loading is analyzed and the analytical solution is obtained.The influence of material paraeters on the deflection is investigated.The dynamical response of the viscoelastic Timoshenko beam subjected to a periodic excitation is studied by means of mode shape functions.And the effect of both transverse shear and rotational inertia on the vibration of the beam is discussed. -
[1] GemantA.Onfractional diffedrences [J].Phil mag,1938,25,(1),:92-96. [2] BagleyRL, TorvikPJ.On the fractioal calculus model ofviscoelasticity benavior[J].J of Rneology, 1986,30(1): 133-155. [3] Koeller RC, Applications ofthe fractional calculus to the theory of viscoelastity[J].JApplMech,1984,51(3):294-298. [4] Rossiknin Y A.Shitikova M V.Applications of fractional calculus to dynamic problems of liltear and nonlinear hereditary mechanics of solid[J].Appl Mech Rev, 1997, 50(1): 15-67. [5] Argyris J.Chaotic Vibrations of a nonlinear viscoelastic beam[J], Chaos Solitons Fractals, 1996,7 (1): 151-163. [6] Akoz Y, Kadioglu F.The mixed finite element nethod for the quasi-static and dynamic analysis ofviscoelastic Timoshenko beams[J].Int J Numer Mech Engng, 1999,44(5): 1909-1932. [7] 陈立群,程昌钧.非线性粘弹性梁的动力学行为[J].应用数学和力学,2000,21(9):897-902. [8] Samko SG, Kiibas AA, Marichev O L.FractiomalIntegrals and Deri: Theory and Application[M].New York: Gordon and Breach Science Publishers,1993. [9] 罗祖道,李思简.各向异性材料力学[M].上海:上海交通大学出版社,1994. [10] Spinelli R A.Numerocal inversion of a Laplace transform[J].SIAMJNumer Anal, 1966,3(4):636-649. [11] 刘延柱,陈文良,陈立群.振动力学[M].北京:高等教育出版社,1998.
计量
- 文章访问数: 2798
- HTML全文浏览量: 170
- PDF下载量: 819
- 被引次数: 0