The Smooth and Nonsmooth Travelling Wave Solutions in a Nonlinear Wave Equation
-
摘要: 讨论了一类偏微分方程的行波解。该方程的行波方程对应于一个平面三次多项式系统,因而可将行波解的研究化为对平面系统所定义的相轨线的拓扑分类研究。应用平面动力系统理论在三参数空间内作定性分析,首先获得三次多项式系统的完整拓扑分类,再将相平面分析的结果返回到非线性波解u(ξ) 。考虑到解关于变量ξ=x-ct在“奇线”近旁的不连续性,可得到各种光滑与非光滑行波的存在条件。Abstract: The travelling wave solutions(TWS)in a class of P.D.E.is studied.The travelling wave equation of this P.D.E.is a planar cubic polynomial system in three-parameter space.The study for TWS becomes the topological classifications of bifurcations of phase portraits defined by the planar system.By using the theory of planar dynamical systems to do qualitative analysis,all topological classifications of the cubic polynomial system can be obtained.Returning the results of the phase plane analysis to TWS,u(N),and considering discontinuity of the right side of the equation of TWS when ξ=x-ct is varied along a phase orbit and passing through a singular curve,all conditions of existence of smooth and nonsmooth travelling waves are given.
-
[1] Philip Rosenau. On nonanalytic solitary waves formed by a nonlinear dispersion[J]. Physics Letters A,1997,230(5/6):305-308. [2] Fuchssteiner B. The Lie algebra structure of nonlinear evolution equations admitting infinite dimensional abelian symmetry groups[J]. Progr Theoret Phys,1981,65(2): 861. [3] 李继彬,李存富. 平面三次Hamilton系统与(E3)的极限环分布[J]. 数学学报,1985,28(4):510-522. [4] Olver P J, Rosenau. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support[J]. Phys Rev E,1996,53(2):1900-1906. [5] 李继彬,李存富. 非线性微分方程[M]. 成都: 成都科技大学出版社,1987. [6] 张芷芬. 微分方程定性理论(现代数学丛书)[M]. 北京:科学出版社,1985.
计量
- 文章访问数: 2349
- HTML全文浏览量: 121
- PDF下载量: 611
- 被引次数: 0