留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义缓坡方程

黄虎 丁平兴 吕秀红

黄虎, 丁平兴, 吕秀红. 广义缓坡方程[J]. 应用数学和力学, 2001, 22(6): 645-650.
引用本文: 黄虎, 丁平兴, 吕秀红. 广义缓坡方程[J]. 应用数学和力学, 2001, 22(6): 645-650.
HUANG Hu, DING Ping-xing, LÜ Xiu-hong. Extended Mild-Slope Equation[J]. Applied Mathematics and Mechanics, 2001, 22(6): 645-650.
Citation: HUANG Hu, DING Ping-xing, LÜ Xiu-hong. Extended Mild-Slope Equation[J]. Applied Mathematics and Mechanics, 2001, 22(6): 645-650.

广义缓坡方程

基金项目: 国家杰出青年科学基金资助项目(49825161);1999年上海市博市后科研资助计划资助
详细信息
    作者简介:

    黄虎(1964- ),男,新疆石河子人,副教授,博士.

  • 中图分类号: O353.2

Extended Mild-Slope Equation

  • 摘要: 运用表面波Hamilton方法和缓坡逼近假定,分析缓变三维流场和非平整海底对波浪传播的影响,推导出广义缓坡方程。海底地形由两个分量组成:慢变分量,其水平长度尺度大于表面波的波长;快变分量,其振幅与表面波的波长相比为一小量,但是其频率与表面波频率相当。该广义缓坡方程具有广泛的适用范围,以下著名的缓坡方程成为它的特例:经典的Berkhoff缓坡方程;包含环境流效应的Kirby缓坡方程;描述波状海底特征的Dingemans缓坡方程。另外,同时也得到了描述环境流场和快变海底效应的广义浅水方程。
  • [1] Dingemans M W. Water Wave Propagatio n Over Uneven Bottoms[M]. Singapore: World Scientific,1997.
    [2] Kirby J T. Nonlinear, dispersive long waves in water of va riable depth[A]. In: Hunt J N Ed. Gravity Waves in Water of Finite Depth[C]. Southampt on: Computational Mechanics Publications,1997,55-126.
    [3] Kirby J T. A note on linear surface wave-current interaction[J]. J Geophys Res,1984,89(C1):745-747.
    [4] Yoon S B, Liu P L-F. Interaction of currents and weakly no nlinear water waves in shallow water[J]. J Fluid Mech,1989,205:397-419.
    [5] Liu P L-F. Wave transformation[A]. In: LeMehaute B, Hane s D M Ed s. The Sea, Ocean Engineering Science[C]. New York: J Wiley and Sons,1990, 27-63.
    [6] Kirby J T. A general wave equation for waves over rippled beds[J]. J Fluid Mech,1986,162:171-186.
    [7] Chamberlain P G, Porter D. The modified mild-slope equation[J]. J Fluid Mech,1995,291:393-407.
    [8] Chandrasekera C N, Cheung K F. Extended linear refraction-diffraction model[J]. J Wtrwy Port Coast and Oc Engrg,1997,123(5) :280-286.
    [9] Lee C, Park W S, Cho Y-S, et al. Hyperbolic mild-slope equations extended to account for rapidly varying topography[J]. Coastal Eng,1998,34:243-257.
    [10] Thomas G P, Klopman G. Wave-current interactions in the near shore region[A]. In: Hunt J N Ed. Gravity Waves in Water of Finite Depth[C]. Southampton: Computational Mechanics Publications,1997,255-319.
    [11] Zakharov V E. Stability of periodic waves of finite amplitude on the surface of a deep fluid[J]. J Appl Mech Tech Phys,1968,2:190-194.
    [12] Broer L J F. On the Hamiltonian theory of surface waves[J]. Appl Sci Res,1974,30(5):430-446.
    [13] Miles J W. On Hamilton's principle for surface waves[J]. J Fluid Mech,1977,83:153-158.
    [14] Berkhoff J C W. Computation of combined refraction-diffraction[A]. In: 13th Inte Conf on Coastal Engng[C]. New York: ASCE,1972,471-490.
  • 加载中
计量
  • 文章访问数:  2485
  • HTML全文浏览量:  100
  • PDF下载量:  809
  • 被引次数: 0
出版历程
  • 收稿日期:  1999-07-30
  • 修回日期:  2001-01-15
  • 刊出日期:  2001-06-15

目录

    /

    返回文章
    返回