留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两压电介质之间的界面夹杂问题

高存法 樊蔚勋

高存法, 樊蔚勋. 两压电介质之间的界面夹杂问题[J]. 应用数学和力学, 2001, 22(1): 85-92.
引用本文: 高存法, 樊蔚勋. 两压电介质之间的界面夹杂问题[J]. 应用数学和力学, 2001, 22(1): 85-92.
GAO Cun-fa, FAN Wei-xun. An Interface Inclusion Between Two Dissimilar Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2001, 22(1): 85-92.
Citation: GAO Cun-fa, FAN Wei-xun. An Interface Inclusion Between Two Dissimilar Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2001, 22(1): 85-92.

两压电介质之间的界面夹杂问题

基金项目: 航空科学基金资助项目(98B52017)
详细信息
    作者简介:

    高存法(1962- ),男,安徽人,副教授,博士;樊蔚勋(1937- ),男,江苏人,教授,博导.

  • 中图分类号: O346.1

An Interface Inclusion Between Two Dissimilar Piezoelectric Materials

  • 摘要: 应用Stroh理论,研究了两压电介质之间的刚性介电线夹杂问题。首先该问题被化为Hilbert问题,然后分别给出了压电介质内的复势函数解、夹杂内的电场解和夹杂尖端场的解析表达式。结果表明,在夹杂尖端附近,所有的场变量均呈现奇异性和振荡性,且其强度取决于介质的材料常数和无限场远处的应变。此外,结果还表明,当从夹杂内部趋近夹杂尖端时,夹杂内的电场也呈现奇异性和振荡性。
  • [1] Wang Z Y, Zhang H T, Chou Y T. Characte ristics of the elastic field of a rigid line inhomogeneity[J]. J Appl Mech,1985,52(3):818-822.
    [2] Wang Z Y, Zhang H T, Chou Y T. Stress singularity at the tip of a rigid line inhomogeneity under anti-plane shear loading[J]. J Appl Mech,19 86,53(2):459-461.
    [3] Ballarini R. An integral equation approach for rigid line inhomoge neity problems[J]. Int J Fractures,1987,33(1):R23-R26.
    [4] Li Q, Ting T C T. Line inclusions in anisotropic elastic solids[J]. J Appl Mech,1989,56(3):558-563.
    [5] Hao T H, Wu Y C. Elastic plane problem of collinear period ical rigid lines[J]. Engng Fracture Mech,1989,33(4):979-981.
    [6] Jiang C P. The plane problem of collinear rigid lines under arbitrary loads[J]. Engng Fract Mech,1991,39(2):299-308.
    [7] Chen Y H, Hahn H G. The stress singularity coefficient at a finite rigid flat inclusion in an orthotropic plane elastic body[J]. Engng Fract Mech,1993,44(3):359-362.
    [8] 蒋持平. 各向异性材料中共线刚性夹杂的纵向剪切问题[J]. 应用数学和力学,1994,15(2):147-154.
    [9] Ballarini R. A rigid line inclusion at a bimaterial interface[J]. Engng Fract Mech,1990,37(1):1-5.
    [10] Wu K C. Line inclusion at anisotropic bimaterial interface[J]. Mechanics of Materials,1990,10(2):173-182.
    [11] Chao C K, Chang R C. Thermoelastic problem of dissimilar anisotropic solids with a rigid line inclusion[J]. J Appl Mech,1994,61(4):978-980.
    [12] Asundi A, Deeg W. Rigid inclusions on the interface between two bonded anisotropic media[J]. J Mech Phy Solids,1995,13(6): 1045-1058.
    [13] Liang J, Han J C, Du S Y. Rigid line inclusions and cracks in anisotropic piezoelectric solids[J]. Mech Res Commu,1995,22(1):43-49.
    [14] Chen S W. Rigid line inclusions under antiplane deformation and inplane electric field in piezoelectric materials[J]. Engng Fract Mech,1997,56(2):265-274.
    [15] Deng W, Meguid S A. Analysis of conducting rigid inclusion at the interface of two dissimilar piezoelectric materials[J]. J Appl Mech,1998,65(1):76-84.
    [16] Suo Z, Kuo C M, Barnett D M, et al. Fracture mechanics for piezoelectric ceramics[J]. J Mech Phys Solids,1992,40(4):739-765.
    [17] Suo Z. Singularities, interfaces and cracks in dissimilar anisotr opic media[J]. Proc R Soc Lond,1990,A427(1873):331-358.
    [18] Muskhelishvili N I. Some Basic Problems of Mathematical Theory of Elasticity[M]. Leyden: Noordhoof,1975.
  • 加载中
计量
  • 文章访问数:  2251
  • HTML全文浏览量:  132
  • PDF下载量:  450
  • 被引次数: 0
出版历程
  • 收稿日期:  1999-05-26
  • 修回日期:  2000-09-28
  • 刊出日期:  2001-01-15

目录

    /

    返回文章
    返回