Anomalous Dynamics Response of Nonlinear Elastic Bar
-
摘要: 讨论了拉伸速度呈周期变化的受拉非线性弹性直杆的动力行为。采用Melnikov方法研究时发现,材料的非线性使得动力响应发生异常,对确定的直杆而言,当拉伸速度超过某个临界值时,动力系统将出现次谐分岔和混沌。
-
关键词:
- 次谐分岔 /
- 异宿轨道 /
- 混沌 /
- Melnikov函数
Abstract: The dynamics behavior of tension bar with periodic tension velocity was presented. Melinkov method was used to study the dynamic system.The results show that material nonlinear may result in anomalo us dynamics response.The subharmonic bifurcation and chaos may occur in the determined system when the tension velocity exceeds the critical value.-
Key words:
- subharmonic bifurcation /
- hetero clinic orbit /
- chaos /
- Melnikov function
-
[1] Moon F C, Shaw S W. Chaotic vibration of a beam with nonlinear boundary conditions[J]. Non-Linear Mech,1983,18(6). [2] Ramu Anantha S, Sankar T S, Ganesan R. Bifurcations, catastrophes and chaos in a pre-buckled beam[J]. Int J Nonlinear Mechanics,1994,29(3). [3] 赵建宏,蔡中民. 非线性粘弹性圆柱杆在阶跃载荷速度下的迭代解[A]. 力学与工程应用[M]. 太原:山西高教联合出版社,1994. [4] 蔡中民. 零级次弹性圆柱杆在阶跃速度拉伸时的惯性效应[J]. 工程力学,1993(增刊). [5] Lenci S, Menditto G, Tarantino A M. The chaotic resonance[J]. Eur J Mech A/Solid,1994,13(6). [6] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Befurcations of Vector Fields[M]. Springer-Verlag,1983.
计量
- 文章访问数: 2357
- HTML全文浏览量: 117
- PDF下载量: 539
- 被引次数: 0