Pansystems Methodology and Construction of Magic Squares
-
摘要: 论述了泛系方法论的精缩影模式及其对求解、建模、算法生成与理论建构的作用,同时用泛系方法提出并证明了:1递归构造n阶幻方(n≥5)的方法;2已知m阶幻方和n阶幻方(m,n≥3),求mn阶幻方的公式;3已知m阶幻方(m≥3),构造2m阶幻方的方法。Abstract: Some patterns of refined epitomes of pansystems methodology were revealed roles and the related of them in problem-solving,modeling,algorithm-generating and theory-constructing were introduced.An important application of pansystems methodology is to give some methods of constructing the typical pansymmetries-magic squares:1.a method of recursively constructing magic squares of order n(n≥5);2.when magic squares of order m(m≥3)and magic squares of order n(n⑥≥3) are given.a formula of obtaining magic squares of order mn;3.when magic squares of order m(m≥3)are given,a method of obtaining magic squares of order 2m.
-
Key words:
- pansystems methodology /
- magic square /
- recursion
-
[1] Wu Xuemou, Guo Dinghe. Pansystems theory: A transfield multilayer network-like research[A]. In: General Systems Studies and Applications[C]. Wuhan: Press of Huazhong University of Science and Technology,1997,46~65. [2] Wu Xuemou, Guo Dinghe. Pansystems: methodology and relativity/from Confucius, Laozi, Descartes to Einstein[A]. In:Systems Science and Its Applications[C]. Tianjin: Tianjin People's Publishing House,1998,1~6. [3] Wu Xuemou. Pansystems investigations on nonlinearity and pansystems cybernetics[A]. In: Proceedings of the 2nd International Conference on Nonlinear Mechanics[C]. Beijing: Peking University Press,1993,920~923. [4] 吴学谋. 泛系:一种形而泛学的创生[M]. 武汉:湖北教育出版社,1998,1~630. [5] 吴学谋. 泛系理论与数学方法[M]. 南京: 江苏教育出版社,1990,1~122. [6] 夏树人,孙道杠. 中国古代数学的世界冠军[M]. 重庆:重庆出版社,1984.
计量
- 文章访问数: 2060
- HTML全文浏览量: 125
- PDF下载量: 618
- 被引次数: 0