Hopf Bifurcation for a Ecological Mathematical Model on Microbe Populations
-
摘要: 讨论了一类具有二阶生长速率的微生物菌群生态数学模型。运用常微分方程空间定性理论的手法,在四维相空间中对该模型进行了深入讨论,判定了平衡点的类型及稳定性,分析了正平衡点的存在及成为O+吸引子的条件。最后讨论了系统小扰动下产生Hopf分支的问题。Abstract: The ecological Model of a class of the two microbe populations with second-order growth rate is studied.The methods of qualitative theory of ordinary differential equations are used in the four-dimension phase space.The qualitative property and stability of equilibrium points are analysed. The conditions under which the positive equilibrium point exists and becomes and O+ attractor are obtained.The problems on Hopf bifurcation are discussed in detail when small perturbation occurs.
-
Key words:
- mathematical model /
- qualitative theory /
- equilibrium points /
- Hopf bifurcation
-
[1] 袁晓凤,刘世泽,郭瑞海等. 厌氧消化过程三种群微生物生态数学模型的定性分析[J]. 四川大学学报(自然科学版),1997,34(3):373~376. [2] 梅茨基 B.B, 斯捷巴诺夫 B.B. 微分方程定性理论[M].(王柔怀译)北京: 科学出版社,1959,201~230. [3] 刘世泽. n维空间奇点的拓扑分类[J]. 数学进展,1965,8(3):217~242. [4] Hartman P. Ordinary Differential Equation[M]. Baston: Birkhauser,1982,228~250. [5] 李继彬,冯贝叶. 稳定性、分支与混沌[M]. 昆明: 云南科技出版社,1995,85~127. [6] Wiggins S. Introduction to Applied Nonlinear Dynamical System and Chaos[M]. New York: Springer-verlag,1990,193~284. [7] Liu Zhenrong, Jing Zhujun. Qualitative analysis for a third-order differential equation in a model of chemical systems[J]. Syst Scie Math Scie,1992,5(4):299~309.
计量
- 文章访问数: 2812
- HTML全文浏览量: 107
- PDF下载量: 662
- 被引次数: 0