Dynamic Modeling and Simulation of Flexible Cable With Large Sag
-
摘要: 用多刚体-球铰模型对大垂度柔索进行离散化建模,利用多刚体系统动力学理论建立了该模型的动力学方程.采用矩阵广义逆理论对其位移和速度进行修正,以消除该微分-代数方程在数值分析中的违约现象.数值仿真证明了该方法的正确性.Abstract: Discrete model of flexible cable with large sag is established by using multiple rigid body- spherical hinge model,and dynamic equation of that discrete model is derived according to dynamics theory of multiple rigid body system.Displacement and velocity of system are revised to eliminate violation phenomenon of the differential-algebra equation in numerical simulation based on the theory of generalized inverse of matrices.Numerical simulation proves the validity of our method.
-
[1] 李著景.特殊结构[M].北京:清华大学出版社,1988. [2] 掘高夫,村山茂明.悬索理论及其应用[M].北京:中国林业出版社,1992. [3] Ahmadi-Kashani K.Vibration of hanging cables[J].Computers &Structures,1989,21(5):699~715. [4] Sahay C.Vibration of overhead transmission lines[J].Shock Vibration Digest,1989,21(5):8~13. [5] Kamman J W,Huston R L.Dynamics of constrained multibody systems[J].J Appl Mech,1984,51(12):899~903. [6] 洪嘉振.多体系统动力学:理论、计算方法和应用[M].上海:上海交通大学出版社,1992. [7] 潘振宽,赵维加,洪嘉振,等.多体系统动力学微分/ 代数方程组的数值方法[J].力学进展,1996,26(1):28~39. [8] 于清,洪嘉振.受约束多体系统一种新的违约校正方法[J].力学学报,1998,30(3):301~305. [9] Bao R,Matra S K.Generalized Inverse of Matrices and Its Applications[M].New York:Willy Press,1971. [10] 殷学纲.多体方法在梁的非线性分析中的应用[J].重庆大学学报,1988,11(11):113~125.
计量
- 文章访问数: 2866
- HTML全文浏览量: 183
- PDF下载量: 961
- 被引次数: 0