Equations of Motion and Boundary Conditions of Incremental Rate Type for Polar Continua
-
摘要: 推导出了各种偶应力张量间和它们的变率间的关系,并建立起增率型角动量方程及其相应的边界条件。于是,把这些结果和匡震邦在“非线性连续介质力学基础”中给出的经典连续统力学的相应结果组合起来即得Cauchy形式和Piola形式以及Kirchhoff形式的极性连续统的增率型运动方程和边界条件。Abstract: The relations between various couple stress tensors and their change rates are derived. The equations of angular momentum and the corresponding boundary conditions of incremental rate type are presented. Thus the equations of motion and the boundary conditions of incremental rate type of Cauchy form, Piola form and Kirchhoff form for polar continua are obtained in combination of theser esults with those for classical continuum mechanics derived by Kuang Zhen.
-
Key words:
- equations of motion /
- boundary conditions /
- incremental rates /
- polar continua
-
[1] 匡震邦.非线性连续介质力学基础[M].西安:西安交通大学出版社,1989. [2] Eringen A C.Continuum Physics[M].Vol.Ⅳ,New York:Academic Press,1976. [3] Dluzewski P H.Finite deformations of polar elastic media[J].Int J Solids Structures,1993,30(16):2277~2285. [4] 戴天民.三组非局部极性热力连续统的均衡方程和跳变条件[J].中国科学(A辑),1997,27(12):1106~1110. [5] Eringen A C.Balance laws of micromorphic continua revisited[J].Int J Engng Sci,1992,30(6):805~810.
计量
- 文章访问数: 2408
- HTML全文浏览量: 157
- PDF下载量: 743
- 被引次数: 0