留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有次线性和超线性项的非线性椭圆型方程组最小正解的存在性

尼考里·塔夫列

尼考里·塔夫列. 具有次线性和超线性项的非线性椭圆型方程组最小正解的存在性[J]. 应用数学和力学, 2000, 21(3): 253-259.
引用本文: 尼考里·塔夫列. 具有次线性和超线性项的非线性椭圆型方程组最小正解的存在性[J]. 应用数学和力学, 2000, 21(3): 253-259.
Nicolae Tarfulea. Existence of the Minimal Positive Solution of Some Nonlinear Elliptic Systems When the Nonlinearity is the Sum of a Sublinear and a Superlinear Term[J]. Applied Mathematics and Mechanics, 2000, 21(3): 253-259.
Citation: Nicolae Tarfulea. Existence of the Minimal Positive Solution of Some Nonlinear Elliptic Systems When the Nonlinearity is the Sum of a Sublinear and a Superlinear Term[J]. Applied Mathematics and Mechanics, 2000, 21(3): 253-259.

具有次线性和超线性项的非线性椭圆型方程组最小正解的存在性

详细信息
  • 中图分类号: O175.25

Existence of the Minimal Positive Solution of Some Nonlinear Elliptic Systems When the Nonlinearity is the Sum of a Sublinear and a Superlinear Term

  • 摘要: 证明了对每一λ∈(0,Λ),当Λ>0时半线性椭圆型方程组。有最小正解(λuv)。其中ΩRN(N≥2)为具有光滑边界的有界区域,0<q<1u,λv关于λ是严格递增的。
  • [1] de Figueiredo D G, Mitidieri E.A maximun principle for an elliptic system and applications to semilinear problems[J].SIAM J Math Anal,1986,17:836~849.
    [2] Chiappinelli R, de Figueiredo D G.Bifurcation from infinite and multiple solutions for an elliptic system[Z].Relatorio de Pesquisa (junho-1992),Univ Estadual de campinas, Brasil.
    [3] Lazer A C, McKenna P J.On steady state solutions of a system of reaction-diffusion equations from biology[J].Nonlinear Anal T M A,1982,6:523~530.
    [4] de Be Silva E A.Existence and multiplicity of solutions for semilinear elliptic systems[J].NoDEA Nonlinear Differential Equations Appl,1994,1:339~363.
    [5] Tarfulea N.On a reaction-diffusion system involving the critical exponent[J].Rer Mat Univ Complut Madrid,1998,11:461~472.
    [6] Ambrosetti A, Brezis H, Cerami G.Combined effects of concave and convex nonlinearities in some elliptic problems[J].J Funct Anal,1994,122:519~543.
    [7] Sattinger D H.Monotone methods in nonlinear elliptic and parabolic boundary value problems[J].Indiana Univ Math J,1972,21:979~1000.
    [8] Boccardo L, Excobedo M, Peral I.A dirichlet problem involving critical exponent[Z].Quadernon11/1993,CNR-Roma, Italia.
    [9] Rothe F.Global existence of branches of stationary solutions for a system of reaction diffusion equations from biology[J].Nonlinear Anal T M A,1981,5:487~498.
  • 加载中
计量
  • 文章访问数:  2145
  • HTML全文浏览量:  139
  • PDF下载量:  731
  • 被引次数: 0
出版历程
  • 收稿日期:  1999-03-01
  • 刊出日期:  2000-03-15

目录

    /

    返回文章
    返回