留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解二维不可压缩Navier-Stokes方程的混合型微分求积法

孙建安 朱正佑

孙建安, 朱正佑. 求解二维不可压缩Navier-Stokes方程的混合型微分求积法[J]. 应用数学和力学, 1999, 20(12): 1259-1266.
引用本文: 孙建安, 朱正佑. 求解二维不可压缩Navier-Stokes方程的混合型微分求积法[J]. 应用数学和力学, 1999, 20(12): 1259-1266.
Sun Jian'an, Zhu Zhengyou. A Mixture Differential Quadrature Method for Solving Two-Dimensional Incompressible Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 1999, 20(12): 1259-1266.
Citation: Sun Jian'an, Zhu Zhengyou. A Mixture Differential Quadrature Method for Solving Two-Dimensional Incompressible Navier-Stokes Equations[J]. Applied Mathematics and Mechanics, 1999, 20(12): 1259-1266.

求解二维不可压缩Navier-Stokes方程的混合型微分求积法

详细信息
    作者简介:

    孙建安(1964~ ),男,副教授,主要从事流体力学数值方法的研究.

  • 中图分类号: O357.1

A Mixture Differential Quadrature Method for Solving Two-Dimensional Incompressible Navier-Stokes Equations

  • 摘要: 微分求积法(DQM)能以较少的网格点求得微分方程的高精度数值解,但采用单纯的微分求积法求解二维不可压缩Navier-Stokes方程时,只能对低雷诺数流动获得较好的数值解,当雷诺数较高时会导致数值解不收敛。为此,提出了一种微分求积法与迎风差分法混合求解二维不可压缩Navier-Stokes方程的预估-校正数值格式,用伪时间相关算法以较少的网格点获得了较高雷诺数流动的数值解。作为算例,对1:1和1:2驱动方腔内的流动进行了计算,得到了较好的数值结果。
  • [1] Bellman R, Casti J. Differential quadrature and long-term integration[J]. J Math Anal Appl,1971,34(2):235~238.
    [2] Bellman R, Kashef B G, Casti J. Differential quadrature: a technique for the rapid solution of non~linear partial differential equations[J]. J Comput Phys,1972,10(1):40~52.
    [3] Bert C W, Malik M. Differential quadrature method in computational mechanics: a review[J]. Appl Mech Rev,1996,49(1):1~27.
    [4] Shu C, Richards B E. Application of generalized differential quadrature to solve two-dimentional incompressible Navier-Stokes equations[J]. Int J Numer Methods Fluids,1992,15(7):791~798.
    [5] Chu C, Richards B F. Parallel simulation of incompressible viscous flows by generalized differential quadrature[J]. Comput Syst Eng,1992,3(1-4):271~281.
    [6] Striz A G, Chen W L. Application of the differential quadrature method to the driven cavity problem[J]. Int J Non-Linear Mech,1994,29(5):665~670.
    [7] Chia U, Chia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J]. J Comput Phys,1982,48(2):387~411.
    [8] Kawaguti M. Numerical solution of the Navier-Stokes equations for the flow in a two-dimensional cavity[J]. J Phys Soc Japan,1961,16(8):2307~2315.
    [9] Burggraf O R. Analytical and numerical studies of the structure of steady separated flow[J]. J Fluid Mech,1966,24(1):113~151.
    [10] Prosnak W J, Kosma Z J. On a new method for numerical solution of the Navier-Stokes equations[J]. Acta Mechanica,1991,89(1):45~63.
  • 加载中
计量
  • 文章访问数:  2647
  • HTML全文浏览量:  199
  • PDF下载量:  760
  • 被引次数: 0
出版历程
  • 收稿日期:  1998-01-06
  • 修回日期:  1999-04-21
  • 刊出日期:  1999-12-15

目录

    /

    返回文章
    返回