Configuration From Truth Vector to XOR Function
-
摘要: 由于卡诺图受到变量个数的限制,在数字电路中由真值向量推求函数表达式未完美解决。在本文中,通过定义向量的两种收缩性,得到了由已知函数真值向量推求异或开关函数的简捷方法,该方法不受变量个数的限制,且易于电脑操作。
-
关键词:
- 异或开关函数 /
- Kronecker积 /
- 真值向量 /
- Reed-Muller函数
Abstract: Kamaugh maps are widely used in the logic synthesis. However, the number of the variable it can deal with is limited. In this paper, two kinds of function shrinking techniques are proposed, and a fast algorithm to configure a truth vector into a XOR function is realized. There is no variable number limitation for this algorithm.-
Key words:
- XOR function /
- Kronecker product /
- truth vector /
- Reed-Muller function
-
[1] 吴训威.多值逻辑电路设计原理[M].杭州:杭州大学出版社,1994. [2] Green D H.Families of Reed-Muller canonical forms[J].International Journal of Electronics,1991,70(3):259~280. [3] Fei Benchu,Hong Qinhua,Zhuang Nan.Calculation of ternary mixed polarity function vector[A].In:Proceedings of the 23th International Symposium on Multiple-valued Logic[C],Sacramento California,IEEE Computor Society,1993,236~238.
计量
- 文章访问数: 2164
- HTML全文浏览量: 128
- PDF下载量: 699
- 被引次数: 0